General notes:
-
The description of methods given here is only a summary. For more information, always check the java docs.
-
All examples assume that the classpath is already set, e.g., by using the command line flag -cp target/meka-1.7.6.jar:lib/* (in Linux). See the Tutorial for more information.
-
m indicates a meta method, can be used with any other Meka classifier. Only examples are given here.
-
p indicates probabilistic base classifier required (at least, recommended) — a classifier which can output a probability between 0 and 1 for each label.
-
s indicates a semi-supervised method, which will use the test data (minus labels) to help train.
-
All methods use -t data.arff which implies a train/test split. For other options, see the tutorial.
Scalability notes. Scalability in general depends on
-
The number of features: try doing feature selection first (see WEKA documentation, for example) and create a new ARFF file — or use a subset meta method ensemble RandomSubspaceML
-
The number of instances: use an ensemble method EnsembleML with tiny subsets (e.g., -P 20 for 20 percent), or RandomSubspaceML
-
The number of labels: if over 1000 labels, use a label powerset method, if labelling is very dense and noisy (many label combinations), use a binary relevance method
-
The base classifier: WEKA’s SMO usually provides good results, and is reasonably fast, but for really large datasets you may have to use something like NaiveBayes or SGD (with very few iterations). Keep in mind that some classes (like SMO) make many binary problems internally to deal with the multi-class case (i.e., as produced by label powerset methods).
Misc notes.
-
The emphasis here is on the different methods available. For more examples of general command-line arguments (for example on thresholds, splits, debug output), see the tutorial
-
Most methods already come with a sensible default classifier, for example J48 as a base classifier for problem transformation methods, and CC as a default classifier for many ensemble methods. To use the default classifier simply leave out the -W option.
Binary Relevance Methods
Binary relevance methods create an individual model for each label. This means that each model is a simply binary problem, but many labels means many models which can easily fill up memory.
Class | Name | Description / Notes | Examples | |
---|---|---|---|---|
BR |
Binary Relevance |
Individual classifiers |
java meka.classifiers.multilabel.BR -t data.arff -W weka.classifiers.functions.SMO |
|
CC |
Classifier Chains |
.. linked in a cascaded chain, random node order |
java meka.classifiers.multilabel.CC -t data.arff -W weka.classifiers.functions.SMO |
|
CT |
Classifier Trellis |
.. linked in a trellis, connectivity L, heuristic X |
java meka.classifiers.multilabel.CT -L 2 -X Ibf -t data.arff -W weka.classifiers.functions.SMO |
|
CDN |
p |
Classifier Dependency Network |
Fully-connected, undirected, I iterations, Ic of which for collecting marginals |
java meka.classifiers.multilabel.CDN -I 1000 -Ic 100 -t data.arff -W weka.classifiers.functions.SMO -- -M |
CDT |
p |
Classifier Dependency Trellis |
.. in a trellis structure of connectivity L, heuristic X |
java meka.classifiers.multilabel.CDT -I 1000 -Ic 100 -L 3 -t data.arff -W weka.classifiers.functions.SMO -- -M |
meta.BaggingML |
m |
Ensembles of Classifier Chains (ECC) |
A Bagging ensemble of I chains, bagging P % of the instances |
java meka.classifiers.multilabel.meta.BaggingML -I 10 -P 100 -t data.arff -W meka.classifiers.multilabel.CC -- -W weka.classifiers.functions.SMO |
meta.RandomSubspaceML |
m |
Subspace Ensembles of Classifier Chains |
.. where each chain is given only a A percent of the attributes |
java meka.classifiers.multilabel.meta.RandomSubspaceML -I 10 -P 80 -A 50 -t data.arff -W meka.classifiers.multilabel.CC -- -W weka.classifiers.functions.SMO |
PCC |
p |
Probabilistic Classifier Chains |
A classifier chain with Bayes Optimal inference, (exponential trials) |
java meka.classifiers.multilabel.PCC -t data.arff -W weka.classifiers.functions.Logistic |
MCC |
p |
Monte-Carlo Classifier Chains |
.. with Monte Carlo search, maximum of Iy inference trials and Is chain-order trails |
java meka.classifiers.multilabel.MCC -Iy 100 -Is 10 -t data.arff -W weka.classifiers.functions.Logistic |
PMCC |
p |
Population of Monte-Carlo Classifier Chains |
.. a population of M chains is kept (not just the best) |
java meka.classifiers.multilabel.PMCC -Iy 100 -Is 50 -M 10 -t data.arff -W weka.classifiers.functions.Logistic |
BCC |
Bayesian Classifier Chains |
Tree connectivity based on Maximum Spanning Tree algorithm |
java meka.classifiers.multilabel.BCC -t data.arff -W weka.classifiers.bayes.NaiveBayes |
Label Powerset Methods
Label powerset inspired classifiers generally provide excellent performance, although only some parameterizations will be able to scale up to larger datasets. In most situations, RAkEL is a good option. PS methods work best when there are only a few typical combinations of labels, and most combinations occur only once and can be pruned away. EPS will work better. MEKA’s implementation of RAkELd is in fact a combination of RAkEL + PS, and should scale up to thousands or even tens of thousands of labels (with enough pruning).
Class | Name | Description / Notes | Examples | |
---|---|---|---|---|
MajorityLabelset |
Majority Lableset |
Always predicts most common labelset |
java meka.classifiers.multilabel.MajorityLabelset -t data.arff |
|
LC |
Label Combination / Label Powerset |
As a multi-class problem |
java meka.classifiers.multilabel.LC -t data.arff -W weka.classifiers.functions.SMO |
|
PS |
Pruned Sets (Pruned Label Powerset) |
.. with P infrequent classes pruned, but up to N subcopies reintroduced |
java meka.classifiers.multilabel.PS -P 1 -N 1 -t data.arff -W weka.classifiers.functions.SMO |
|
meta.EnsembleML |
m |
Ensembles of Pruned Sets (EPS) |
.. in an ensemble, P can be selected from a range |
java meka.classifiers.multilabel.meta.EnsembleML -t data.arff -W meka.classifiers.multilabel.PS -P 1-5 -N 1 -W weka.classifiers.functions.SMO |
PSt |
p |
Pruned Sets thresholded |
.. with an internal threshold |
java meka.classifiers.multilabel.PS -P 1 -N 1 -t data.arff -W weka.classifiers.functions.SMO -- -M |
NSR |
Nearest Set Replacement (NSR) |
Multi-target version of PS |
java -cp "lib/*:target/meka-1.7.4.jar" meka.classifiers.multitarget.NSR -P 1 -N 1 -t data.arff -W weka.classifiers.functions.SMO |
|
SCC |
Super Class/Node Classifier |
Creates super nodes, based on I simulated annealing iterations, V internal split validations, and runs NSR on them. |
java meka.classifiers.multitarget.SCC -I 1000 -V 10 -P 1 -t data.arff -W meka.classifiers.multitarget.CC -- -W weka.classifiers.functions.SMO |
|
RAkEL |
Random k-labEL Pruned Sets |
.. in subsets of size k |
java meka.classifiers.multilabel.RAkEL -P 1 -N 1 -k 3 -t data.arff -W weka.classifiers.functions.SMO |
|
RAkELd |
Disjoint Random Pruned Sets |
.. which are non-overlapping |
java meka.classifiers.multilabel.RAkELd -P 1 -N 1 -k 3 -t data.arff -W weka.classifiers.functions.SMO |
|
SERAkELd |
Subspace Ensembles of RAkELd |
.. an a subset ensemble |
java meka.classifiers.multilabel.meta.RandomSubspaceML -I 10 -P 60 -A 50 -t data.arff -W meka.classifiers.multilabel.RAkELd -- -P 3 -N 1 -k 5 -W weka.classifiers.functions.SMO |
|
HASEL |
Hierachical Label Sets |
.. disjoint subsets defined by a hierarchy in the dataset, e.g., @attribute C.C4 |
java meka.classifiers.multilabel.HASEL -t Enron.arff -P 3 -N 1 -W weka.classifiers.functions.SMO |
|
MULAN -S RAkEL1 |
Random k-labEL Sets |
MULAN’s implementation (no pruning); 10 models, subsets of size [half the number of labels] |
java meka.classifiers.multilabel.MULAN -t data.arff -S RAkEL1 |
|
MULAN -S RAkEL2 |
Random k-labEL Sets |
MULAN’s implementation (no pruning); [2 times the number of labels] models, subsets of size 3 |
java meka.classifiers.multilabel.MULAN -t data.arff -S RAkEL2 |
|
meta.SubsetMapper |
m |
Subset Mapper |
Like ECOCs. Maps predictions to nearest known label combination (from training set) |
java meka.classifiers.multilabel.meta.SubsetMapper -t data.arff -W meka.classifiers.multilabel.BR -- -W weka.classifiers.functions.SMO |
Pairwise and Threshold Methods
Pairwise methods can work well, but they are very sensitive to the number of labels. One-vs-rest classifiers (e.g., RT) can be faster with large numbers of labels, but may not perform as well.
Class | Name | Description / Notes | Examples | |
---|---|---|---|---|
MULAN -S CLR |
Calibrated Label Ranking |
Compares each pair, 01 vs 10, with a calbrated label |
java meka.classifiers.multilabel.MULAN -t data.arff -S CLR |
|
FW |
Fourclass Pairwise |
Compares each pair, 00,01,10,11, with threshold |
java meka.classifiers.multilabel.FW -t data.arff -W weka.classifiers.functions.SMO |
|
RT |
p |
Rank + Threshold |
Duplicates multi-label examples into examples with one label each (one vs. rest). Trains a multi-class classifier, and uses a threshold to reconstitute a multi-label classification |
java meka.classifiers.multilabel.RT -t data.arff -W weka.classifiers.bayes.NaiveBayes |
Other Methods
Semi-supervised methods, when you want to use the testing data (labels are removed first) to help train, neural-network based methods (algorithm adaptation, no base classifier supplied), and ‘deep’ methods which create a higher level feature representation during training.
Class | Name | Description / Notes | Examples | |
---|---|---|---|---|
EM |
mps |
Expectation Maximization |
Uses the classic EM algorithm |
java meka.classifiers.multilabel.meta.EM -t data.arff -I 100 -W meka.classifiers.multilabel.BR -- -W weka.classifiers.bayes.NaiveBayes |
CM |
ms |
Classification Maximization |
.. a non-probabilistic version thereof |
java meka.classifiers.multilabel.meta.CM -t data.arff -I 100 -W meka.classifiers.multilabel.BR -- -W weka.classifiers.bayes.NaiveBayes |
BPNN |
Back Propagation Neural Network |
Multi-Layer Perceptron with H hidden nodes, E iterations |
java meka.classifiers.multilabel.BPNN -t data.arff -H 20 -E 1000 -r 0.01 -m 0.2 |
|
DBPNN |
Deep Back Propagation Neural Network |
.. and with N layers, using RBMs for pretraining |
java meka.classifiers.multilabel.DBPNN -t data.arff -N 3 -H 20 -E 1000 -r 0.01 -m 0.2 |
|
DeepML |
m |
Deep Multi-label |
.. with any ML classifier on top |
java meka.classifiers.multilabel.meta.DeepML -t data.arff -N 2 -H 20 -E 1000 -r 0.01 -m 0.2 -W meka.classifiers.multilabel.CC -- -W weka.classifiers.functions.SMO |
Updateable Methods for Data Streams
Incremental methods suitable for data streams: classifying instances and updating a classifier one instance at a time. Note that accuracy is recorded in windows. Use -B to set the number of windows, and higher verbosity, e.g., -verbosity 5 to see the accuracy reported also per window. These methods are adapted versions of regular multi-label methods.
Class | Name | Description / Notes | Examples | |
---|---|---|---|---|
BRUpdateable |
Updateable Binary Relevance |
Use with any updateable base classifier |
java meka.classifiers.multilabel.incremental.BRUpdateable -B 10 -t data.arff -W weka.classifiers.trees.HoeffdingTree |
|
CCUpdateable |
Updateable Classifier Chains |
Use with any updateable base classifier |
java meka.classifiers.multilabel.incremental.BRUpdateable -B 50 -t data.arff -W weka.classifiers.trees.HoeffdingTree |
|
PSUpdateable |
Updateable Pruned Sets |
.. with initial buffer of size I, and max support S |
java meka.classifiers.multilabel.incremental.PSUpdateable -B 10 -I 500 -S 20 -t data.arff -W weka.classifiers.bayes.NaiveBayesUpdateable |