public class IncrementalEvaluation extends Object
Constructor and Description |
---|
IncrementalEvaluation() |
Modifier and Type | Method and Description |
---|---|
static Result |
evaluateModel(MultiLabelClassifier h,
weka.core.Instances D)
EvaluateModel - over 20 windows.
|
static Result |
evaluateModel(MultiLabelClassifier h,
String[] options)
EvaluateModel - Build and evaluate.
|
static Result |
evaluateModelBatchWindow(MultiLabelClassifier h,
weka.core.Instances D,
int numWindows,
double rLabeled,
String Top,
String Vop)
EvaluateModelBatchWindow - Evaluate a multi-label data-stream model over windows.
|
static Result |
evaluateModelPrequentialBasic(MultiLabelClassifier h,
weka.core.Instances D,
int windowSize,
double rLabeled,
String Top,
String Vop)
Prequential Evaluation - Accuracy since the start of evaluation.
|
static void |
printOptions(Enumeration e) |
static void |
runExperiment(MultiLabelClassifier h,
String[] args)
RunExperiment - Build and evaluate a model with command-line options.
|
public static void runExperiment(MultiLabelClassifier h, String[] args)
h
- a multi-label updateable classifierargs
- classifier + dataset optionspublic static Result evaluateModel(MultiLabelClassifier h, String[] options) throws Exception
h
- a multi-label Updateable classifieroptions
- dataset options (classifier options should already be set)Exception
public static Result evaluateModel(MultiLabelClassifier h, weka.core.Instances D) throws Exception
Exception
public static Result evaluateModelBatchWindow(MultiLabelClassifier h, weka.core.Instances D, int numWindows, double rLabeled, String Top, String Vop) throws Exception
h
- Multilabel ClassifierD
- streamnumWindows
- number of windowsrLabeled
- labelled-ness (1.0 by default)Top
- threshold optionVop
- verbosity optionException
public static Result evaluateModelPrequentialBasic(MultiLabelClassifier h, weka.core.Instances D, int windowSize, double rLabeled, String Top, String Vop) throws Exception
h
- Multilabel ClassifierD
- streamwindowSize
- sampling frequency (of evaluation statistics)rLabeled
- labelled-ness (1.0 by default)Top
- threshold optionVop
- verbosity option
The window is sampled every N/numWindows instances, for a total of numWindows windows.Exception
public static void printOptions(Enumeration e)
Copyright © 2017. All Rights Reserved.