public class ARAMNetwork extends ARAMNetworkClass
For more information on Naive Bayes classifiers, see
George H. John and Pat Langley (1995). Estimating Continuous Distributions in Bayesian Classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. pp. 338-345. Morgan Kaufmann, San Mateo.
Valid options are:
-K
Use kernel estimation for modelling numeric attributes rather than
a single normal distribution.
-D
Use supervised discretization to process numeric attributes.
| Modifier and Type | Field and Description |
|---|---|
int |
numClasses |
int |
numFeatures |
double |
threshold |
| Constructor and Description |
|---|
ARAMNetwork() |
ARAMNetwork(int fnumFeatures,
int fnumClasses,
double fro,
double fthreshold) |
| Modifier and Type | Method and Description |
|---|---|
double[] |
ARAMm_Ranking2Class(double[] rankings) |
void |
buildClassifier(weka.core.Instances D)
Generates the classifier.
|
double |
classifyInstance(weka.core.Instance instance)
Classifies the given test instance.
|
String |
debugTipText()
Returns the tip text for this property
|
double[] |
distributionForInstance(weka.core.Instance instance)
Calculates the class membership probabilities for the given test
instance.
|
double[][] |
distributionForInstanceM(weka.core.Instances i) |
weka.core.Capabilities |
getCapabilities() |
boolean |
getDebug()
Get whether debugging is turned on.
|
String |
getModel()
Returns a string representation of the model.
|
int[] |
getneuronsactivated() |
double[] |
getneuronsactivity() |
String[] |
getOptions()
Gets the current settings of the classifier.
|
String |
globalInfo()
Returns a string describing this classifier
|
boolean |
isThreaded() |
Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(String[] argv) |
void |
setDebug(boolean debug)
Set debugging mode.
|
void |
setOptions(String[] options)
Parses a given list of options.
|
void |
setThreaded(boolean setv) |
String |
toString()
Returns a description of the classifier.
|
void |
updateClassifier(weka.core.Instance instance)
Updates the classifier with the given instance.
|
testCapabilitiesclassifierTipText, defaultClassifierOptions, defaultClassifierString, getClassifier, getClassifierSpec, postExecution, preExecution, setClassifierbatchSizeTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDoNotCheckCapabilities, getNumDecimalPlaces, getRevision, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDoNotCheckCapabilities, setNumDecimalPlacespublic int numFeatures
public int numClasses
public double threshold
public ARAMNetwork(int fnumFeatures,
int fnumClasses,
double fro,
double fthreshold)
public ARAMNetwork()
public int[] getneuronsactivated()
public double[] getneuronsactivity()
public String globalInfo()
public void buildClassifier(weka.core.Instances D)
throws Exception
instances - set of instances serving as training dataException - if the classifier has not been generated
successfullypublic void updateClassifier(weka.core.Instance instance)
throws Exception
instance - the new training instance to include in the modelException - if the instance could not be incorporated in
the model.public double[] distributionForInstance(weka.core.Instance instance)
throws Exception
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class weka.classifiers.AbstractClassifierinstance - the instance to be classifiedException - if there is a problem generating the predictionpublic double[] ARAMm_Ranking2Class(double[] rankings)
public double classifyInstance(weka.core.Instance instance)
throws Exception
classifyInstance in interface weka.classifiers.ClassifierclassifyInstance in class weka.classifiers.AbstractClassifierinstance - the instance to be classifiedException - if an error occurred during the predictionpublic Enumeration listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.SingleClassifierEnhancerpublic void setOptions(String[] options) throws Exception
-K
Use kernel estimation for modelling numeric attributes rather than
a single normal distribution.
-D
Use supervised discretization to process numeric attributes.
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.SingleClassifierEnhanceroptions - the list of options as an array of stringsException - if an option is not supportedpublic String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.SingleClassifierEnhancerpublic String toString()
public static void main(String[] argv)
public String getModel()
MultiLabelClassifierpublic boolean isThreaded()
public void setThreaded(boolean setv)
public double[][] distributionForInstanceM(weka.core.Instances i)
throws Exception
Exceptionpublic void setDebug(boolean debug)
MultiLabelClassifiersetDebug in interface MultiLabelClassifiersetDebug in class weka.classifiers.AbstractClassifierdebug - true if debug output should be printedpublic boolean getDebug()
MultiLabelClassifiergetDebug in interface MultiLabelClassifiergetDebug in class weka.classifiers.AbstractClassifierpublic String debugTipText()
MultiLabelClassifierdebugTipText in interface MultiLabelClassifierdebugTipText in class weka.classifiers.AbstractClassifierpublic weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.classifiers.ClassifiergetCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.classifiers.SingleClassifierEnhancerCopyright © 2017. All Rights Reserved.