public class HARAMNetwork extends ARAMNetworkClass implements weka.core.OptionHandler, weka.core.WeightedInstancesHandler, weka.classifiers.UpdateableClassifier, weka.core.Randomizable, weka.core.TechnicalInformationHandler, MultiLabelClassifier
For more information on Naive Bayes classifiers, see
George H. John and Pat Langley (1995). Estimating Continuous Distributions in Bayesian Classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. pp. 338-345. Morgan Kaufmann, San Mateo.
Valid options are:
-K
Use kernel estimation for modelling numeric attributes rather than
a single normal distribution.
-D
Use supervised discretization to process numeric attributes.
activity_report, neuronsactivated, neuronsactivity, numClasses, numFeatures, threshold
Constructor and Description |
---|
HARAMNetwork() |
HARAMNetwork(int fnumFeatures,
int fnumClasses,
double fro,
double fthreshold,
double cvig) |
Modifier and Type | Method and Description |
---|---|
double[] |
ARAMm_Ranking2Class(double[] rankings) |
void |
buildClassifier(weka.core.Instances D)
Generates the classifier.
|
double |
classifyInstance(weka.core.Instance instance)
Classifies the given test instance.
|
double[] |
distributionForInstance(weka.core.Instance instance)
Calculates the class membership probabilities for the given test
instance.
|
double[][] |
distributionForInstanceM(weka.core.Instances i) |
double |
getClusterVigilance() |
String |
getModel()
Returns a string representation of the model.
|
String[] |
getOptions()
Gets the current settings of the classifier.
|
int |
getSeed() |
weka.core.TechnicalInformation |
getTechnicalInformation() |
double |
getThreshold() |
double |
getVigilancy() |
String |
globalInfo()
Description to display in the GUI.
|
boolean |
isThreaded() |
Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(String[] argv) |
void |
PrepareHClusters() |
void |
setClusterVigilance(double fclustervig) |
void |
setOptions(String[] options)
Parses a given list of options.
|
void |
setSeed(int seed) |
void |
setThreaded(boolean setv) |
void |
setThreshold(double fthreshold) |
void |
setVigilancy(double vigilancy) |
String |
toString()
Returns a description of the classifier.
|
void |
updateClassifier(weka.core.Instance instance)
Updates the classifier with the given instance.
|
testCapabilities
classifierTipText, defaultClassifierOptions, defaultClassifierString, getCapabilities, getClassifier, getClassifierSpec, postExecution, preExecution, setClassifier
batchSizeTipText, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, getRevision, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
debugTipText, getDebug, setDebug
public HARAMNetwork(int fnumFeatures, int fnumClasses, double fro, double fthreshold, double cvig)
public HARAMNetwork()
public void buildClassifier(weka.core.Instances D) throws Exception
buildClassifier
in interface weka.classifiers.Classifier
instances
- set of instances serving as training dataException
- if the classifier has not been generated
successfullypublic void updateClassifier(weka.core.Instance instance) throws Exception
updateClassifier
in interface weka.classifiers.UpdateableClassifier
instance
- the new training instance to include in the modelException
- if the instance could not be incorporated in
the model.public void PrepareHClusters()
public double[] distributionForInstance(weka.core.Instance instance) throws Exception
distributionForInstance
in interface weka.classifiers.Classifier
distributionForInstance
in class weka.classifiers.AbstractClassifier
instance
- the instance to be classifiedException
- if there is a problem generating the predictionpublic double[] ARAMm_Ranking2Class(double[] rankings)
public double classifyInstance(weka.core.Instance instance) throws Exception
classifyInstance
in interface weka.classifiers.Classifier
classifyInstance
in class weka.classifiers.AbstractClassifier
instance
- the instance to be classifiedException
- if an error occurred during the predictionpublic Enumeration listOptions()
listOptions
in interface weka.core.OptionHandler
listOptions
in class weka.classifiers.SingleClassifierEnhancer
public void setOptions(String[] options) throws Exception
-K
Use kernel estimation for modelling numeric attributes rather than
a single normal distribution.
-D
Use supervised discretization to process numeric attributes.
setOptions
in interface weka.core.OptionHandler
setOptions
in class weka.classifiers.SingleClassifierEnhancer
options
- the list of options as an array of stringsException
- if an option is not supportedpublic String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class weka.classifiers.SingleClassifierEnhancer
public String toString()
public static void main(String[] argv)
public boolean isThreaded()
isThreaded
in interface MultiLabelClassifierThreaded
public void setThreaded(boolean setv)
setThreaded
in interface MultiLabelClassifierThreaded
public double[][] distributionForInstanceM(weka.core.Instances i) throws Exception
distributionForInstanceM
in interface MultiLabelClassifierThreaded
Exception
public double getVigilancy()
public void setVigilancy(double vigilancy)
public void setThreshold(double fthreshold)
public double getThreshold()
public void setClusterVigilance(double fclustervig)
public double getClusterVigilance()
public String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface weka.core.TechnicalInformationHandler
public void setSeed(int seed)
setSeed
in interface weka.core.Randomizable
public int getSeed()
getSeed
in interface weka.core.Randomizable
public String getModel()
MultiLabelClassifier
getModel
in interface MultiLabelClassifier
Copyright © 2017. All Rights Reserved.