public class HARAMNetwork extends ARAMNetworkClass implements weka.core.OptionHandler, weka.core.WeightedInstancesHandler, weka.classifiers.UpdateableClassifier, weka.core.Randomizable, weka.core.TechnicalInformationHandler, MultiLabelClassifier
For more information on Naive Bayes classifiers, see
George H. John and Pat Langley (1995). Estimating Continuous Distributions in Bayesian Classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. pp. 338-345. Morgan Kaufmann, San Mateo.
Valid options are:
-K
Use kernel estimation for modelling numeric attributes rather than
a single normal distribution.
-D
Use supervised discretization to process numeric attributes.
activity_report, neuronsactivated, neuronsactivity, numClasses, numFeatures, threshold| Constructor and Description |
|---|
HARAMNetwork() |
HARAMNetwork(int fnumFeatures,
int fnumClasses,
double fro,
double fthreshold,
double cvig) |
| Modifier and Type | Method and Description |
|---|---|
double[] |
ARAMm_Ranking2Class(double[] rankings) |
void |
buildClassifier(weka.core.Instances D)
Generates the classifier.
|
double |
classifyInstance(weka.core.Instance instance)
Classifies the given test instance.
|
double[] |
distributionForInstance(weka.core.Instance instance)
Calculates the class membership probabilities for the given test
instance.
|
double[][] |
distributionForInstanceM(weka.core.Instances i) |
double |
getClusterVigilance() |
String |
getModel()
Returns a string representation of the model.
|
String[] |
getOptions()
Gets the current settings of the classifier.
|
int |
getSeed() |
weka.core.TechnicalInformation |
getTechnicalInformation() |
double |
getThreshold() |
double |
getVigilancy() |
String |
globalInfo()
Description to display in the GUI.
|
boolean |
isThreaded() |
Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(String[] argv) |
void |
PrepareHClusters() |
void |
setClusterVigilance(double fclustervig) |
void |
setOptions(String[] options)
Parses a given list of options.
|
void |
setSeed(int seed) |
void |
setThreaded(boolean setv) |
void |
setThreshold(double fthreshold) |
void |
setVigilancy(double vigilancy) |
String |
toString()
Returns a description of the classifier.
|
void |
updateClassifier(weka.core.Instance instance)
Updates the classifier with the given instance.
|
testCapabilitiesclassifierTipText, defaultClassifierOptions, defaultClassifierString, getCapabilities, getClassifier, getClassifierSpec, postExecution, preExecution, setClassifierbatchSizeTipText, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, getRevision, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacesclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitdebugTipText, getDebug, setDebugpublic HARAMNetwork(int fnumFeatures,
int fnumClasses,
double fro,
double fthreshold,
double cvig)
public HARAMNetwork()
public void buildClassifier(weka.core.Instances D)
throws Exception
buildClassifier in interface weka.classifiers.Classifierinstances - set of instances serving as training dataException - if the classifier has not been generated
successfullypublic void updateClassifier(weka.core.Instance instance)
throws Exception
updateClassifier in interface weka.classifiers.UpdateableClassifierinstance - the new training instance to include in the modelException - if the instance could not be incorporated in
the model.public void PrepareHClusters()
public double[] distributionForInstance(weka.core.Instance instance)
throws Exception
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class weka.classifiers.AbstractClassifierinstance - the instance to be classifiedException - if there is a problem generating the predictionpublic double[] ARAMm_Ranking2Class(double[] rankings)
public double classifyInstance(weka.core.Instance instance)
throws Exception
classifyInstance in interface weka.classifiers.ClassifierclassifyInstance in class weka.classifiers.AbstractClassifierinstance - the instance to be classifiedException - if an error occurred during the predictionpublic Enumeration listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.SingleClassifierEnhancerpublic void setOptions(String[] options) throws Exception
-K
Use kernel estimation for modelling numeric attributes rather than
a single normal distribution.
-D
Use supervised discretization to process numeric attributes.
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.SingleClassifierEnhanceroptions - the list of options as an array of stringsException - if an option is not supportedpublic String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.SingleClassifierEnhancerpublic String toString()
public static void main(String[] argv)
public boolean isThreaded()
isThreaded in interface MultiLabelClassifierThreadedpublic void setThreaded(boolean setv)
setThreaded in interface MultiLabelClassifierThreadedpublic double[][] distributionForInstanceM(weka.core.Instances i)
throws Exception
distributionForInstanceM in interface MultiLabelClassifierThreadedExceptionpublic double getVigilancy()
public void setVigilancy(double vigilancy)
public void setThreshold(double fthreshold)
public double getThreshold()
public void setClusterVigilance(double fclustervig)
public double getClusterVigilance()
public String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic void setSeed(int seed)
setSeed in interface weka.core.Randomizablepublic int getSeed()
getSeed in interface weka.core.Randomizablepublic String getModel()
MultiLabelClassifiergetModel in interface MultiLabelClassifierCopyright © 2017. All Rights Reserved.