public class WARAM extends ARAMNetworkClass implements MultiLabelClassifierThreaded, weka.core.OptionHandler, weka.core.WeightedInstancesHandler, weka.classifiers.UpdateableClassifier, MultiLabelDrawable
For more information on Naive Bayes classifiers, see
George H. John and Pat Langley (1995). Estimating Continuous Distributions in Bayesian Classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. pp. 338-345. Morgan Kaufmann, San Mateo.
Valid options are:
-K
Use kernel estimation for modelling numeric attributes rather than
a single normal distribution.
-D
Use supervised discretization to process numeric attributes.
activity_report, neuronsactivated, neuronsactivity, numClasses, numFeatures, thresholdBATCH_SIZE_DEFAULT, m_BatchSize, m_Debug, m_DoNotCheckCapabilities, m_numDecimalPlaces, NUM_DECIMAL_PLACES_DEFAULTBayesNet, Newick, NOT_DRAWABLE, TREE| Constructor and Description |
|---|
WARAM() |
WARAM(int fnumFeatures,
int fnumClasses,
double fro,
double fthreshold) |
| Modifier and Type | Method and Description |
|---|---|
double[] |
ARAMm_Ranking2Class(double[] rankings) |
void |
buildClassifier(weka.core.Instances D)
Generates the classifier.
|
double |
classifyInstance(weka.core.Instance instance)
Classifies the given test instance.
|
String |
debugTipText()
Returns the tip text for this property
|
double[] |
distributionForInstance(weka.core.Instance instance)
Calculates the class membership probabilities for the given test
instance.
|
double[][] |
distributionForInstanceM(weka.core.Instances i) |
weka.core.Capabilities |
getCapabilities() |
boolean |
getDebug()
Get whether debugging is turned on.
|
String |
getModel()
Returns a string representation of the model.
|
String[] |
getOptions()
Gets the current settings of the classifier.
|
String |
globalInfo()
Returns a string describing this classifier
|
Map<Integer,String> |
graph()
Returns a string that describes a graph representing
the object.
|
Map<Integer,Integer> |
graphType()
Returns the type of graph representing
the object.
|
boolean |
isThreaded() |
Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(String[] argv) |
void |
setDebug(boolean debug)
Set debugging mode.
|
void |
setOptions(String[] options)
Parses a given list of options.
|
void |
setThreaded(boolean setv) |
String |
toString()
Returns a description of the classifier.
|
void |
updateClassifier(weka.core.Instance instance)
Updates the classifier with the given instance.
|
testCapabilitiesclassifierTipText, defaultClassifierOptions, defaultClassifierString, getClassifier, getClassifierSpec, postExecution, preExecution, setClassifierbatchSizeTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDoNotCheckCapabilities, getNumDecimalPlaces, getRevision, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDoNotCheckCapabilities, setNumDecimalPlacespublic WARAM(int fnumFeatures,
int fnumClasses,
double fro,
double fthreshold)
public WARAM()
public String globalInfo()
public void buildClassifier(weka.core.Instances D)
throws Exception
buildClassifier in interface weka.classifiers.Classifierinstances - set of instances serving as training dataException - if the classifier has not been generated
successfullypublic void updateClassifier(weka.core.Instance instance)
throws Exception
updateClassifier in interface weka.classifiers.UpdateableClassifierinstance - the new training instance to include in the modelException - if the instance could not be incorporated in
the model.public double[] distributionForInstance(weka.core.Instance instance)
throws Exception
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class weka.classifiers.AbstractClassifierinstance - the instance to be classifiedException - if there is a problem generating the predictionpublic double[] ARAMm_Ranking2Class(double[] rankings)
public double classifyInstance(weka.core.Instance instance)
throws Exception
classifyInstance in interface weka.classifiers.ClassifierclassifyInstance in class weka.classifiers.AbstractClassifierinstance - the instance to be classifiedException - if an error occurred during the predictionpublic Enumeration listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.SingleClassifierEnhancerpublic void setOptions(String[] options) throws Exception
-K
Use kernel estimation for modelling numeric attributes rather than
a single normal distribution.
-D
Use supervised discretization to process numeric attributes.
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.SingleClassifierEnhanceroptions - the list of options as an array of stringsException - if an option is not supportedpublic String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.SingleClassifierEnhancerpublic String toString()
public static void main(String[] argv)
public String getModel()
MultiLabelClassifiergetModel in interface MultiLabelClassifierpublic Map<Integer,Integer> graphType()
MultiLabelDrawablegraphType in interface MultiLabelDrawablepublic Map<Integer,String> graph() throws Exception
MultiLabelDrawablegraph in interface MultiLabelDrawableException - if the graph can't be computedpublic void setDebug(boolean debug)
MultiLabelClassifiersetDebug in interface MultiLabelClassifiersetDebug in class weka.classifiers.AbstractClassifierdebug - true if debug output should be printedpublic boolean getDebug()
MultiLabelClassifiergetDebug in interface MultiLabelClassifiergetDebug in class weka.classifiers.AbstractClassifierpublic String debugTipText()
MultiLabelClassifierdebugTipText in interface MultiLabelClassifierdebugTipText in class weka.classifiers.AbstractClassifierpublic weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.classifiers.ClassifiergetCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.classifiers.SingleClassifierEnhancerpublic boolean isThreaded()
isThreaded in interface MultiLabelClassifierThreadedpublic void setThreaded(boolean setv)
setThreaded in interface MultiLabelClassifierThreadedpublic double[][] distributionForInstanceM(weka.core.Instances i)
throws Exception
distributionForInstanceM in interface MultiLabelClassifierThreadedExceptionCopyright © 2017. All Rights Reserved.