public class CC extends MultilabelClassifier implements weka.core.Randomizable, weka.core.TechnicalInformationHandler
Constructor and Description |
---|
CC() |
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(weka.core.Instances D) |
double[] |
distributionForInstance(weka.core.Instance x) |
int[] |
getChain() |
double[] |
getConfidences()
GetConfidences - get the posterior probabilities of the previous prediction (after calling distributionForInstance(x)).
|
int |
getSeed() |
weka.core.TechnicalInformation |
getTechnicalInformation() |
weka.core.Instance[] |
getTransformTemplates(weka.core.Instance x)
GetTransformTemplates - pre-transform the instance x, to make things faster.
|
java.lang.String |
globalInfo()
Description to display in the GUI.
|
static void |
main(java.lang.String[] args) |
double[] |
probabilityForInstance(weka.core.Instance x,
double[] path)
ProbabilityForInstance - Force our way down the imposed 'path'.
|
void |
rebuildClassifier(int[] new_chain,
weka.core.Instances D)
Rebuild - NOT YET IMPLEMENTED.
|
double[] |
sampleForInstance(weka.core.Instance x,
java.util.Random r)
SampleForInstance.
|
double[] |
sampleForInstanceFast(weka.core.Instance[] t_,
java.util.Random r)
SampleForInstance - given an Instance template for each label, and a Random.
|
void |
setChain(int[] chain) |
void |
setSeed(int s) |
weka.core.Instance[] |
transformInstance(weka.core.Instance x)
TransformInstances - this function is DEPRECATED.
|
evaluation, getCapabilities, getRevision, getTemplate, makeCopies, runClassifier, testCapabilities, toString
classifierTipText, getClassifier, getOptions, listOptions, setClassifier, setOptions
public void setChain(int[] chain)
public int[] getChain()
public void buildClassifier(weka.core.Instances D) throws java.lang.Exception
buildClassifier
in interface weka.classifiers.Classifier
buildClassifier
in class MultilabelClassifier
java.lang.Exception
public double[] getConfidences()
public double[] distributionForInstance(weka.core.Instance x) throws java.lang.Exception
distributionForInstance
in interface weka.classifiers.Classifier
distributionForInstance
in class MultilabelClassifier
java.lang.Exception
public double[] sampleForInstance(weka.core.Instance x, java.util.Random r) throws java.lang.Exception
x
- test Instancer
- Random <- TODO probably can use this.m_R insteadjava.lang.Exception
public weka.core.Instance[] getTransformTemplates(weka.core.Instance x) throws java.lang.Exception
java.lang.Exception
public double[] sampleForInstanceFast(weka.core.Instance[] t_, java.util.Random r) throws java.lang.Exception
t_
- Instance templates (pre-transformed) using #getTransformTemplates(x)java.lang.Exception
public weka.core.Instance[] transformInstance(weka.core.Instance x) throws java.lang.Exception
java.lang.Exception
public double[] probabilityForInstance(weka.core.Instance x, double[] path) throws java.lang.Exception
x
- test Instancepath
- the path we want to go downjava.lang.Exception
public void rebuildClassifier(int[] new_chain, weka.core.Instances D) throws java.lang.Exception
new_chain
- the new chainD
- the original training datajava.lang.Exception
public void setSeed(int s)
setSeed
in interface weka.core.Randomizable
public int getSeed()
getSeed
in interface weka.core.Randomizable
public java.lang.String globalInfo()
globalInfo
in class MultilabelClassifier
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface weka.core.TechnicalInformationHandler
public static void main(java.lang.String[] args)