public class CC extends MultilabelClassifier implements weka.core.Randomizable, weka.core.TechnicalInformationHandler
| Constructor and Description |
|---|
CC() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(weka.core.Instances D) |
double[] |
distributionForInstance(weka.core.Instance x) |
int[] |
getChain() |
double[] |
getConfidences()
GetConfidences - get the posterior probabilities of the previous prediction (after calling distributionForInstance(x)).
|
int |
getSeed() |
weka.core.TechnicalInformation |
getTechnicalInformation() |
weka.core.Instance[] |
getTransformTemplates(weka.core.Instance x)
GetTransformTemplates - pre-transform the instance x, to make things faster.
|
java.lang.String |
globalInfo()
Description to display in the GUI.
|
static void |
main(java.lang.String[] args) |
double[] |
probabilityForInstance(weka.core.Instance x,
double[] path)
ProbabilityForInstance - Force our way down the imposed 'path'.
|
void |
rebuildClassifier(int[] new_chain,
weka.core.Instances D)
Rebuild - NOT YET IMPLEMENTED.
|
double[] |
sampleForInstance(weka.core.Instance x,
java.util.Random r)
SampleForInstance.
|
double[] |
sampleForInstanceFast(weka.core.Instance[] t_,
java.util.Random r)
SampleForInstance - given an Instance template for each label, and a Random.
|
void |
setChain(int[] chain) |
void |
setSeed(int s) |
weka.core.Instance[] |
transformInstance(weka.core.Instance x)
TransformInstances - this function is DEPRECATED.
|
evaluation, getCapabilities, getRevision, getTemplate, makeCopies, runClassifier, testCapabilities, toStringclassifierTipText, getClassifier, getOptions, listOptions, setClassifier, setOptionspublic void setChain(int[] chain)
public int[] getChain()
public void buildClassifier(weka.core.Instances D)
throws java.lang.Exception
buildClassifier in interface weka.classifiers.ClassifierbuildClassifier in class MultilabelClassifierjava.lang.Exceptionpublic double[] getConfidences()
public double[] distributionForInstance(weka.core.Instance x)
throws java.lang.Exception
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class MultilabelClassifierjava.lang.Exceptionpublic double[] sampleForInstance(weka.core.Instance x,
java.util.Random r)
throws java.lang.Exception
x - test Instancer - Random <- TODO probably can use this.m_R insteadjava.lang.Exceptionpublic weka.core.Instance[] getTransformTemplates(weka.core.Instance x)
throws java.lang.Exception
java.lang.Exceptionpublic double[] sampleForInstanceFast(weka.core.Instance[] t_,
java.util.Random r)
throws java.lang.Exception
t_ - Instance templates (pre-transformed) using #getTransformTemplates(x)java.lang.Exceptionpublic weka.core.Instance[] transformInstance(weka.core.Instance x)
throws java.lang.Exception
java.lang.Exceptionpublic double[] probabilityForInstance(weka.core.Instance x,
double[] path)
throws java.lang.Exception
x - test Instancepath - the path we want to go downjava.lang.Exceptionpublic void rebuildClassifier(int[] new_chain,
weka.core.Instances D)
throws java.lang.Exception
new_chain - the new chainD - the original training datajava.lang.Exceptionpublic void setSeed(int s)
setSeed in interface weka.core.Randomizablepublic int getSeed()
getSeed in interface weka.core.Randomizablepublic java.lang.String globalInfo()
globalInfo in class MultilabelClassifierpublic weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic static void main(java.lang.String[] args)