MEKA 1.7.6
A B C D E F G H I J K L M N O P R S T U V W 

A

A - Class in meka.core
A.java - Handy array operations
A() - Constructor for class meka.core.A
 
abs(double[][]) - Static method in class meka.core.M
 
AbstractDeepNeuralNet - Class in meka.classifiers.multilabel.NN
AbstractDeepNeuralNet.java - Extends AbstractNeuralNet with depth options.
AbstractDeepNeuralNet() - Constructor for class meka.classifiers.multilabel.NN.AbstractDeepNeuralNet
 
AbstractExplorerTab - Class in meka.gui.explorer
Ancestor for tabs in the Explorer.
AbstractExplorerTab(Explorer) - Constructor for class meka.gui.explorer.AbstractExplorerTab
Initializes the tab.
AbstractNeuralNet - Class in meka.classifiers.multilabel.NN
AbstractNeuralNet.java - Provides common options, constants, and other functions for NNs.
AbstractNeuralNet() - Constructor for class meka.classifiers.multilabel.NN.AbstractNeuralNet
 
AbstractThreadedExplorerTab - Class in meka.gui.explorer
Supports long-running tasks in a separate thread.
AbstractThreadedExplorerTab(Explorer) - Constructor for class meka.gui.explorer.AbstractThreadedExplorerTab
Initializes the tab.
AbstractThreadedExplorerTab.WorkerThread - Class in meka.gui.explorer
For execution the long-running process.
AbstractThreadedExplorerTab.WorkerThread(AbstractThreadedExplorerTab, Runnable) - Constructor for class meka.gui.explorer.AbstractThreadedExplorerTab.WorkerThread
Initializes the thread.
actuals - Variable in class meka.core.Result
 
add(Result, String) - Method in class meka.gui.core.ResultHistory
Adds the item to the history.
addBias(double[][]) - Static method in class meka.core.M
 
addBias(Matrix) - Static method in class meka.core.M
 
addElement(Result, String) - Method in class meka.gui.core.ResultHistoryList.ResultHistoryModel
Adds the element to the history.
addParameter(String, Component) - Method in class meka.gui.core.ParameterPanel
Adds the label and component as new row at the end.
addParameter(int, String, Component) - Method in class meka.gui.core.ParameterPanel
Inserts the label and component as new row at the specified row.
addResult(double[], Instance) - Method in class meka.core.Result
AddResult - Add an entry.
addResult(Result, String) - Method in class meka.gui.core.ResultHistoryList
Adds the element to the history.
addUndoPoint() - Method in class meka.gui.explorer.Explorer
Adds an undo point.
addValue(String, double) - Method in class meka.core.Result
AddValue.
allActuals() - Method in class meka.core.Result
AllActuals - Retrive all true predictions in an L x N matrix.
allPredictions() - Method in class meka.core.Result
AllPredictions - Retrive all prediction confidences in an L * N matrix.
allPredictions(double) - Method in class meka.core.Result
AllPredictions - Retrive all predictions (according to threshold t) in an L * N matrix.
append(int[], int) - Static method in class meka.core.A
 
argmax(HashMap<?, Integer>) - Static method in class meka.core.MLUtils
maxItem - argmax function for a HashMap NOTE: same as above, but for integer (TODO: do something more clever than this)
attributeIndicesTipText() - Method in class meka.filters.unsupervised.attribute.MekaClassAttributes
Returns the tip text for this property
AttributeSelectionPanel - Class in meka.gui.components
Creates a panel that displays the attributes contained in a set of instances, letting the user toggle whether each attribute is selected or not (eg: so that unselected attributes can be removed before classification).
AttributeSelectionPanel() - Constructor for class meka.gui.components.AttributeSelectionPanel
Creates the attribute selection panel with no initial instances.
AttributeSelectionPanel(boolean, boolean, boolean, boolean) - Constructor for class meka.gui.components.AttributeSelectionPanel
Creates the attribute selection panel with no initial instances.
AttributeSelectionPanel.CellRenderer - Class in meka.gui.components
Cell renderer for the attributes.
AttributeSelectionPanel.CellRenderer() - Constructor for class meka.gui.components.AttributeSelectionPanel.CellRenderer
 
attSizePercentTipText() - Method in class meka.classifiers.multilabel.meta.RandomSubspaceML
 
averageResults(Result[]) - Static method in class meka.core.MLEvalUtils
AverageResults - Create a Result with the average of an array of Results by taking the average +/- standand deviation.

B

backPropagate(double[][], double[][]) - Method in class meka.classifiers.multilabel.BPNN
Back Propagate - Do one round of Back Propagation on batch X_,Y_.
BaggingML - Class in meka.classifiers.multilabel.meta
BaggingML.java - Combining several multi-label classifiers using Bootstrap AGGregatING.
BaggingML() - Constructor for class meka.classifiers.multilabel.meta.BaggingML
 
BaggingMLdup - Class in meka.classifiers.multilabel.meta
BaggingMLdup.java - A version of BaggingML where Instances are duplicated instead of assigned higher weighs.
BaggingMLdup() - Constructor for class meka.classifiers.multilabel.meta.BaggingMLdup
 
BaggingMLUpdateable - Class in meka.classifiers.multilabel.incremental.meta
BaggingMLUpdatable.java - Using the OzaBag scheme (see OzaBag.java from MOA)).
BaggingMLUpdateable() - Constructor for class meka.classifiers.multilabel.incremental.meta.BaggingMLUpdateable
 
BaggingMLUpdateableADWIN - Class in meka.classifiers.multilabel.incremental.meta
BaggingMLUpdatableUpdateableADWIN.java - Using the OzaBag scheme (see OzaBag.java from MOA)).
BaggingMLUpdateableADWIN() - Constructor for class meka.classifiers.multilabel.incremental.meta.BaggingMLUpdateableADWIN
 
BaggingMT - Class in meka.classifiers.multitarget.meta
BaggingMT.java - The Multi-Target Version of BaggingML.
BaggingMT() - Constructor for class meka.classifiers.multitarget.meta.BaggingMT
 
BCC - Class in meka.classifiers.multilabel
BCC.java - Bayesian Classifier Chains.
BCC() - Constructor for class meka.classifiers.multilabel.BCC
 
BCC - Class in meka.classifiers.multitarget
 
BCC() - Constructor for class meka.classifiers.multitarget.BCC
 
bitCount(String) - Static method in class meka.core.MLUtils
 
bitDifference(String, String) - Static method in class meka.core.MLUtils
 
bitDifference(String[], String[]) - Static method in class meka.core.MLUtils
 
bitDifference(int[], int[]) - Static method in class meka.core.MLUtils
 
BPNN - Class in meka.classifiers.multilabel
BPNN.java - Back Propagation Neural Network.
BPNN() - Constructor for class meka.classifiers.multilabel.BPNN
 
BR - Class in meka.classifiers.multilabel
 
BR() - Constructor for class meka.classifiers.multilabel.BR
 
BRq - Class in meka.classifiers.multilabel
BRq.java - Random Subspace ('quick') Version.
BRq() - Constructor for class meka.classifiers.multilabel.BRq
 
BRUpdateable - Class in meka.classifiers.multilabel.incremental
BRUpdateable.java - Updateable BR.
BRUpdateable() - Constructor for class meka.classifiers.multilabel.incremental.BRUpdateable
 
build(Instances, Classifier) - Method in class meka.classifiers.multilabel.cc.CNode
Build - Create transformation for this node, and train classifier of type H upon it.
buildCC(int[], Instances, Classifier) - Static method in class meka.core.CCUtils
BuildCC - Given a base classifier 'g', build a new CC classifier on data D, given chain order 'chain'.
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.BCC
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.BPNN
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.BR
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.BRq
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.CC
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.CCq
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.CDN
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.CDT
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.CT
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.DBPNN
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.FW
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.HASEL
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.incremental.CCUpdateable
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.incremental.meta.BaggingMLUpdateable
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.incremental.meta.BaggingMLUpdateableADWIN
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.incremental.PSUpdateable
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.LC
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.MajorityLabelset
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.MCC
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.meta.BaggingML
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.meta.BaggingMLdup
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.meta.CM
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.meta.DeepML
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.meta.EM
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.meta.EnsembleML
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.meta.MBR
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.meta.RandomSubspaceML
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.meta.SubsetMapper
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.MULAN
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.MultilabelClassifier
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.PMCC
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.PS
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.RAkEL
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.RAkELd
 
buildClassifier(Instances) - Method in class meka.classifiers.multilabel.RT
 
buildClassifier(Instances) - Method in class meka.classifiers.multitarget.CCp
 
buildClassifier(Instances) - Method in class meka.classifiers.multitarget.CR
 
buildClassifier(Instances) - Method in class meka.classifiers.multitarget.NSR
 
buildClassifier(Instances) - Method in class meka.classifiers.multitarget.SCC
 

C

calibrateThreshold(ArrayList<double[]>, double) - Static method in class meka.core.ThresholdUtils
CalibrateThreshold - Calibrate a threshold using PCut: the threshold which results in the best approximation of the label cardinality of the training set.
calibrateThresholds(ArrayList<double[]>, double[]) - Static method in class meka.core.ThresholdUtils
CalibrateThreshold - Calibrate a vector of thresholds (one for each label) using PCut: the threshold t[j] which results in the best approximation of the frequency of the j-th label in the training data.
canUndo() - Method in class meka.gui.explorer.Explorer
Returns whether any operations can be undone currently.
CC - Class in meka.classifiers.multilabel
CC.java - The Classifier Chains Method.
CC() - Constructor for class meka.classifiers.multilabel.CC
 
CC - Class in meka.classifiers.multitarget
 
CC() - Constructor for class meka.classifiers.multitarget.CC
 
CCp - Class in meka.classifiers.multitarget
CCp.java - Multitarget CC with probabilistic output.
CCp() - Constructor for class meka.classifiers.multitarget.CCp
 
CCq - Class in meka.classifiers.multilabel
The Classifier Chains Method - Random Subspace ('quick') Version.
CCq() - Constructor for class meka.classifiers.multilabel.CCq
 
CCUpdateable - Class in meka.classifiers.multilabel.incremental
CCUpdateable.java - Updateable version of CC.
CCUpdateable() - Constructor for class meka.classifiers.multilabel.incremental.CCUpdateable
 
CCUtils - Class in meka.core
CCUtils.java - Handy Utils for working with Classifier Chains (and Trees and Graphs)
CCUtils() - Constructor for class meka.core.CCUtils
 
CDN - Class in meka.classifiers.multilabel
CDN.java - Conditional Dependency Networks.
CDN() - Constructor for class meka.classifiers.multilabel.CDN
 
CDT - Class in meka.classifiers.multilabel
CDT.java - Conditional Dependency Trellis.
CDT() - Constructor for class meka.classifiers.multilabel.CDT
 
char2int(char) - Static method in class meka.core.MLUtils
 
chi2(Instances, int, int) - Static method in class meka.core.StatUtils
Chi^2 - Do the chi-squared test on the j-th and k-th labels in Y.
chi2(Instances) - Static method in class meka.core.StatUtils
Chi^2 - Do the chi-squared test on all pairs of labels.
chi2(double[][][], double[][][]) - Static method in class meka.core.StatUtils
Chi^2 - Chi-squared test.
classCombinationCounts(Instances) - Static method in class meka.core.MLUtils
ClassCombinationCounts - multi-target version of countCombinations(...).
classifierTipText() - Method in class meka.experiment.MekaClassifierSplitEvaluator
Returns the tip text for this property
classify(Instance, double[]) - Method in class meka.classifiers.multilabel.cc.CNode
Return the argmax on #distribution(Instance, double[]).
ClassifyTab - Class in meka.gui.explorer
Simple panel for performing classification.
ClassifyTab(Explorer) - Constructor for class meka.gui.explorer.ClassifyTab
Initializes the tab.
ClassifyTabOptions - Class in meka.gui.explorer
Panel for options for classification.
ClassifyTabOptions() - Constructor for class meka.gui.explorer.ClassifyTabOptions
 
clear() - Method in class meka.gui.core.ResultHistory
Empties the history.
clear() - Method in class meka.gui.core.ResultHistoryList.ResultHistoryModel
Clears the history.
clearLabels(Instance) - Static method in class meka.core.MLUtils
Clear Labels -- set the value of all label attributes to 0.0
clearParameters() - Method in class meka.gui.core.ParameterPanel
Removes all parameters.
clearStatus() - Method in class meka.gui.core.StatusBar
Clears status message.
clearStatus() - Method in class meka.gui.explorer.AbstractExplorerTab
Clears status message.
close() - Method in class meka.gui.explorer.Explorer
Closes the explorer.
closeParent() - Method in class meka.gui.core.MekaPanel
Closes the parent dialog/frame.
CM - Class in meka.classifiers.multilabel.meta
CM.java - Classification Maximization using any multi-label classifier.
CM() - Constructor for class meka.classifiers.multilabel.meta.CM
 
CNode - Class in meka.classifiers.multilabel.cc
CNode.java - A Classifier Node class (for CC-like clasifiers).
CNode(int, int[], int[]) - Constructor for class meka.classifiers.multilabel.cc.CNode
CNode - A Node 'j', taking inputs from all parents inX and paY.
collapse(Properties) - Static method in class meka.core.PropsUtils
Collapses all the inherited and current properties into a single Properties object and returns it.
combineInstances(Instances, Instances) - Static method in class meka.core.MLUtils
Stack two Instances together row-wise.
compare(Object, Object) - Method in class meka.core.LabelSet
 
compare(Object, Object) - Method in class meka.core.LabelSetComparator
 
compare(Object, Object) - Method in class meka.core.LabelVector
multi-label suitable only
condDepMatrix(Instances, Result) - Static method in class meka.core.StatUtils
CondDepMatrix - Get a Conditional Dependency Matrix.
contains(int) - Method in class meka.core.LabelSet
 
contains(int[]) - Method in class meka.core.LabelSet
 
convert(LabelSet[], HashMap<LabelSet, Integer>) - Static method in class meka.core.PSUtils
Given N labelsets 'sparseY', use a count 'map' to
convertDistribution(double[], int) - Method in class meka.classifiers.multitarget.NSR
 
convertDistribution(double[], int, Instances) - Static method in class meka.core.PSUtils
Deprecated.
convertDistribution(double[], int, LabelSet[]) - Static method in class meka.core.PSUtils
Convert Distribution - Given the posterior across combinations, return the distribution across labels.
convertInstance(Instance) - Method in class meka.classifiers.multilabel.RT
ConvertInstance - Convert an Instance to multi-class format by deleting all but one of the label attributes.
convertInstance(Instance, int, Instances) - Static method in class meka.core.PSUtils
Convert a multi-label instance into a multi-class instance, according to a template.
convertInstances(Instances, int) - Method in class meka.classifiers.multitarget.NSR
 
copyValues(Instance, Instance, int, int) - Static method in class meka.core.MLUtils
CopyValues - Set x_dest[j+offset] = x_src[i+from].
copyValues(Instance, Instance, int[]) - Static method in class meka.core.MLUtils
CopyValues - Set x_dest[i++] = x_src[j] for all j in indices[].
countCombinations(Instances, int) - Static method in class meka.core.MLUtils
CountCombinations - return a mapping of each distinct label combination and its count.
countCombinationsSparse(Instances, int) - Static method in class meka.core.MLUtils
CountCombinations in a sparse way.
countCombinationsSparse(Instances, int) - Static method in class meka.core.PSUtils
CountCombinationsSparse - return a mapping of each distinct label combination and its count.
countCombinationsSparseSubset(Instances, int[]) - Static method in class meka.core.PSUtils
CountCombinationsSparseSubset - like CountCombinationsSparse, but only interested in 'indices[]' wrt 'D'.
countSubsets(LabelSet, Set<LabelSet>) - Static method in class meka.core.PSUtils
Count Subsets - returns the number of times labelset 'ysub' exists as a subset in 'Y'.
cover(LabelSet, HashMap<LabelSet, Integer>) - Static method in class meka.core.PSUtils
Cover - cover 'y' completely (or as best as possible) with sets from 'map'.
cover(LabelSet, SortedSet<LabelSet>, Comparator) - Static method in class meka.core.PSUtils
 
CR - Class in meka.classifiers.multitarget
 
CR() - Constructor for class meka.classifiers.multitarget.CR
 
CRITICAL - Static variable in class meka.core.StatUtils
Critical value used for Chi^2 test.
crossValidation(File[], String) - Static method in class meka.experiment.Example
Performs a cross-validation on the datassets.
CT - Class in meka.classifiers.multilabel
CT - Classifier Trellis.
CT() - Constructor for class meka.classifiers.multilabel.CT
 
cvModel(MultilabelClassifier, Instances, int, String) - Static method in class meka.classifiers.multilabel.Evaluation
CVModel - Split D into train/test folds, and then train and evaluate on each one.
cvModel(MultilabelClassifier, Instances, int, String, String) - Static method in class meka.classifiers.multilabel.Evaluation
CVModel - Split D into train/test folds, and then train and evaluate on each one.

D

DBPNN - Class in meka.classifiers.multilabel
DBPNN.java - Deep Back-Propagation Neural Network.
DBPNN() - Constructor for class meka.classifiers.multilabel.DBPNN
 
DEBUG - Static variable in class meka.core.PropsUtils
whether to output some debug information.
DEBUG - Static variable in class meka.gui.goe.GenericObjectEditor
whether to output some debugging information.
DEBUG - Static variable in class meka.gui.goe.GenericPropertiesCreator
whether to output some debugging information.
decodeClass(String) - Static method in class meka.filters.multilabel.SuperNodeFilter
("c_3",'_') -> 3
decodeClasses(String) - Static method in class meka.filters.multilabel.SuperNodeFilter
("c_3+1") -> [3,1]
decodeValue(String) - Static method in class meka.classifiers.multitarget.NSR
 
decodeValue(String) - Static method in class meka.core.MLUtils
Deprecated.
decodeValue(String) - Static method in class meka.filters.multilabel.SuperNodeFilter
"C+A+B" -> ["C","A","B"]
deep_copy() - Method in class meka.core.LabelSet
 
deep_copy(int[][]) - Static method in class meka.core.M
Deep Copy - Make a deep copy of M[][].
DeepML - Class in meka.classifiers.multilabel.meta
DeepML.java - Deep Multi-label Classification.
DeepML() - Constructor for class meka.classifiers.multilabel.meta.DeepML
 
delete(int[], int) - Static method in class meka.core.A
 
delete(int[], int[]) - Static method in class meka.core.A
 
deleteAttributesAt(Instance, int[]) - Static method in class meka.core.MLUtils
 
deleteAttributesAt(Instances, int[]) - Static method in class meka.core.MLUtils
 
determineAllClasses() - Static method in class meka.gui.goe.GenericObjectEditor
 
determineOutputFormat(Instances) - Method in class meka.filters.multilabel.SuperNodeFilter
 
distance(LabelSet) - Method in class meka.core.LabelSet
 
distribution(Instance, double[]) - Method in class meka.classifiers.multilabel.cc.CNode
The distribution this this node, given input x.
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.BPNN
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.BR
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.BRq
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.CC
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.CCq
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.CDN
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.CDT
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.DBPNN
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.FW
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.incremental.CCUpdateable
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.incremental.meta.BaggingMLUpdateableADWIN
DistributionForInstance - And Check for drift by measuring a type of error.
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.incremental.PSUpdateable
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.LC
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.MajorityLabelset
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.MCC
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.meta.DeepML
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.meta.EM
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.meta.MBR
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.meta.MultilabelMetaClassifier
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.meta.RandomSubspaceML
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.meta.SubsetMapper
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.MULAN
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.MultilabelClassifier
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.PCC
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.PMCC
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.PSt
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.RAkEL
 
distributionForInstance(Instance) - Method in class meka.classifiers.multilabel.RT
 
distributionForInstance(Instance) - Method in class meka.classifiers.multitarget.BCC
 
distributionForInstance(Instance) - Method in class meka.classifiers.multitarget.CC
 
distributionForInstance(Instance) - Method in class meka.classifiers.multitarget.CCp
 
distributionForInstance(Instance) - Method in class meka.classifiers.multitarget.CR
 
distributionForInstance(Instance) - Method in class meka.classifiers.multitarget.meta.BaggingMT
 
distributionForInstance(Instance) - Method in class meka.classifiers.multitarget.meta.EnsembleMT
 
distributionForInstance(Instance) - Method in class meka.classifiers.multitarget.NSR
 
distributionForInstance(Instance) - Method in class meka.classifiers.multitarget.SCC
 
distributionT(Instance) - Method in class meka.classifiers.multilabel.cc.CNode
Same as #distribution(Instance, double[]), but the Instance is pre-transformed with ypred inside.
doRun(int) - Method in class meka.experiment.MekaCrossValidationSplitResultProducer
Gets the results for a specified run number.
doRun(int) - Method in class meka.experiment.MekaRandomSplitResultProducer
Gets the results for a specified run number.
dsigma(double) - Static method in class meka.core.M
Derivative of the sigmoid function applied to scalar
dsigma(double[]) - Static method in class meka.core.M
Derivative of the sigmoid function applied to vector
dsigma(double[][]) - Static method in class meka.core.M
Derivative of the sigmoid function applied to Matrix
dsigma(Matrix) - Static method in class meka.core.M
Derivative of the sigmoid function applied to Jama Matrix

E

edit() - Method in class meka.gui.explorer.Explorer
edits the current instances object in the viewer
EM - Class in meka.classifiers.multilabel.meta
EM.java - Expectation Maximization using any multi-label classifier.
EM() - Constructor for class meka.classifiers.multilabel.meta.EM
 
EMPTY_ICON - Static variable in class meka.gui.core.GUIHelper
the empty icon name.
emptyVectors(int[][]) - Static method in class meka.core.MLUtils
EmptyVectors - percentage of empty vectors sum(y[i])==0 in Y.
encodeClass(int) - Static method in class meka.filters.multilabel.SuperNodeFilter
(3,'_') -> "c_3"
encodeClass(String, String) - Static method in class meka.filters.multilabel.SuperNodeFilter
(["c_3","c_1"]) -> "c_3+1"
encodeClass(int[]) - Static method in class meka.filters.multilabel.SuperNodeFilter
([3,1]) -> "c_3+1"
encodeValue(int[]) - Static method in class meka.core.MLUtils
Deprecated.
encodeValue(String, String) - Static method in class meka.filters.multilabel.SuperNodeFilter
(3,1) -> "3+1"
encodeValue(Instance, int[]) - Static method in class meka.filters.multilabel.SuperNodeFilter
(3,1,2) -> "3+1+2"
EnsembleML - Class in meka.classifiers.multilabel.meta
EnsembleML.java - Combines several multi-label classifiers in a simple-subset ensemble.
EnsembleML() - Constructor for class meka.classifiers.multilabel.meta.EnsembleML
 
EnsembleMT - Class in meka.classifiers.multitarget.meta
The Multi-Target Version of EnsembleML.
EnsembleMT() - Constructor for class meka.classifiers.multitarget.meta.EnsembleMT
 
equals(Object) - Method in class meka.core.LabelSet
 
equals(Object) - Method in class meka.core.LabelVector
 
evaluateModel(MultilabelClassifier, Instances, Instances, String) - Static method in class meka.classifiers.multilabel.Evaluation
EvaluateModel - Build model 'h' on 'D_train', test it on 'D_test', threshold it according to 'top', using default verbosity option.
evaluateModel(MultilabelClassifier, Instances, Instances, String, String) - Static method in class meka.classifiers.multilabel.Evaluation
EvaluateModel - Build model 'h' on 'D_train', test it on 'D_test', threshold it according to 'top', verbosity 'vop'.
evaluateModel(MultilabelClassifier, Instances, String, String) - Static method in class meka.classifiers.multilabel.Evaluation
EvaluateModel - Assume 'h' is already built, test it on 'D_test', threshold it according to 'top', verbosity 'vop'.
evaluateModel(MultilabelClassifier, Instances, Instances) - Static method in class meka.classifiers.multilabel.Evaluation
EvaluateModel - Build model 'h' on 'D_train', test it on 'D_test'.
evaluateModel(MultilabelClassifier, String[]) - Static method in class meka.classifiers.multilabel.incremental.IncrementalEvaluation
EvaluateModel - Build and evaluate.
evaluateModel(MultilabelClassifier, Instances) - Static method in class meka.classifiers.multilabel.incremental.IncrementalEvaluation
EvaluateModel - over 20 windows.
evaluateModel(MultilabelClassifier, Instances, int, double, String, String) - Static method in class meka.classifiers.multilabel.incremental.IncrementalEvaluation
EvaluateModel - Evaluate a multi-label data-stream model over a moving window.
Evaluation - Class in meka.classifiers.multilabel
Evaluation.java - Evaluation functionality.
Evaluation() - Constructor for class meka.classifiers.multilabel.Evaluation
 
evaluation(MultilabelClassifier, String[]) - Static method in class meka.classifiers.multilabel.MultilabelClassifier
Called by classifier's main() method upon initialisation from the command line.
Example - Class in meka.experiment
Just for testing the experiment API.
Example() - Constructor for class meka.experiment.Example
 
Explorer - Class in meka.gui.explorer
Explorer GUI for MEKA.
Explorer() - Constructor for class meka.gui.explorer.Explorer
 

F

F - Class in meka.core
F.java - TRANSFORM/FILTER OPERATIONS.
F() - Constructor for class meka.core.F
 
F(Instances) - Static method in class meka.core.StatUtils
F - Relative frequency matrix (between p(j),p(k) and p(j,k)) in dataset D.
F1(int[], int[]) - Static method in class meka.core.Metrics
F1 - the F1 measure for two sets.
FileChooserBookmarksPanel - Class in meka.gui.core
Panel for bookmarking directories in a JFileChooser.
FileChooserBookmarksPanel() - Constructor for class meka.gui.core.FileChooserBookmarksPanel
 
FileChooserBookmarksPanel.FileChooserBookmarksFactory - Class in meka.gui.core
MEKA-specific factory.
FileChooserBookmarksPanel.FileChooserBookmarksFactory() - Constructor for class meka.gui.core.FileChooserBookmarksPanel.FileChooserBookmarksFactory
 
FileChooserBookmarksPanel.FileChooserBookmarksPropertiesHandler - Class in meka.gui.core
The MEKA-specific properties handler.
FileChooserBookmarksPanel.FileChooserBookmarksPropertiesHandler() - Constructor for class meka.gui.core.FileChooserBookmarksPanel.FileChooserBookmarksPropertiesHandler
 
FILENAME - Static variable in class meka.gui.core.FileChooserBookmarksPanel
the properties to store the bookmarks in.
find(String) - Static method in class meka.core.PropsUtils
Locates the properties file in the current classpath.
finishBusy() - Method in class meka.gui.core.StatusBar
Stops the animated icon, without setting status message.
finishBusy(String) - Method in class meka.gui.core.StatusBar
Stops the animated icon, setting the specified status message.
finishBusy() - Method in class meka.gui.explorer.AbstractExplorerTab
Stops the animated icon, without setting status message.
finishBusy(String) - Method in class meka.gui.explorer.AbstractExplorerTab
Stops the animated icon, setting the specified status message.
fixRelationName(Instances) - Static method in class meka.core.MLUtils
Fixes the relation name by adding the "-C" attribute to it if necessary.
fixRelationName(Instances, int) - Static method in class meka.core.MLUtils
Fixes the relation name by adding the "-C" attribute to it if necessary.
flatten(int[][]) - Static method in class meka.core.M
Flatten - turn Matrix [0 1; 2 3] into vector [0 1 2 3].
forwardPass(double[][]) - Method in class meka.classifiers.multilabel.BPNN
Forward Pass - Given input X_, get output of all layers Z[0]...
fromBitString(String) - Static method in class meka.core.MLUtils
FromBitString - returns a double[] representation of s.
fromSparseString(String) - Static method in class meka.core.MLUtils
From Sparse String - From a sparse String representation, e.g., [1,34,73], to a binary int[] where those indices are set to 1.
FW - Class in meka.classifiers.multilabel
FW.java Four-class pairWise classification.
FW() - Constructor for class meka.classifiers.multilabel.FW
 

G

gen_indices(int) - Static method in class meka.core.MLUtils
Deprecated.
generatePartition(int) - Static method in class meka.core.SuperLabelUtils
generatePartition - return [[0],...,[L-1]].
generatePartition(int[], Random) - Static method in class meka.core.SuperLabelUtils
generatePartition - .
generatePartition(int[], int, Random) - Static method in class meka.core.SuperLabelUtils
generatePartition.
generatePartition(int[], int, Random, boolean) - Static method in class meka.core.SuperLabelUtils
 
GenericObjectEditor - Class in meka.gui.goe
An extended GOE to cater for the multi-label classifiers.
GenericObjectEditor() - Constructor for class meka.gui.goe.GenericObjectEditor
Default constructor.
GenericObjectEditor(boolean) - Constructor for class meka.gui.goe.GenericObjectEditor
Constructor that allows specifying whether it is possible to change the class within the editor dialog.
GenericPropertiesCreator - Class in meka.gui.goe
Custom GOE props creator, to include the MEKA classes.
GenericPropertiesCreator() - Constructor for class meka.gui.goe.GenericPropertiesCreator
initializes the creator, locates the props file with the Utils class.
get(int) - Method in class meka.gui.core.ResultHistory
Returns the specified history item.
get_k_subset(int, int, Random) - Static method in class meka.core.SuperLabelUtils
Get k subset - return a set of k label indices (of L possible labels).
getAllSubsets(LabelSet, HashMap<LabelSet, Integer>) - Static method in class meka.core.PSUtils
GetAllSubsets - Get all frequent subsets of 'y' according to 'map'.
getApproxC(Instances) - Static method in class meka.core.StatUtils
GetApproxP - A fast version of getC(D), based on frequent sets.
getApproxP(Instances) - Static method in class meka.core.StatUtils
GetApproxP - A fast version of getP(D), based on frequent sets.
getAttributeIndices() - Method in class meka.filters.unsupervised.attribute.MekaClassAttributes
Get the current range selection
getAttSizePercent() - Method in class meka.classifiers.multilabel.meta.RandomSubspaceML
Gets the percentage of attributes to sample from the original set.
getBagSizePercent() - Method in class meka.classifiers.multilabel.meta.MultilabelMetaClassifier
 
getC(Instances) - Static method in class meka.core.StatUtils
GetC - Get pairwise co-ocurrence counts from the training data D.
getCapabilities() - Method in class meka.classifiers.multilabel.MultilabelClassifier
 
getCapabilities() - Method in class meka.classifiers.multitarget.NSR
 
getCapabilities() - Method in class meka.filters.unsupervised.attribute.MekaClassAttributes
Returns the Capabilities of this filter.
getChain() - Method in class meka.classifiers.multilabel.CC
 
getChain() - Method in class meka.classifiers.multitarget.CCp
 
getChainIterations() - Method in class meka.classifiers.multilabel.MCC
Get the iterations of s (chain order)
getChooseClassPopupMenu() - Method in class meka.gui.goe.GenericObjectEditor
Returns a popup menu that allows the user to change the class of object.
getCol(double[][], int) - Static method in class meka.core.M
GetCol - return the k-th column of M (as a vector).
getCol(int[][], int) - Static method in class meka.core.M
GetCol - return the k-th column of M (as a vector).
getConfidences() - Method in class meka.classifiers.multilabel.CC
GetConfidences - get the posterior probabilities of the previous prediction (after calling distributionForInstance(x)).
getCounts(Instances, int[], int) - Static method in class meka.filters.multilabel.SuperNodeFilter
Return a set of all the combinations of attributes at 'indices' in 'D', pruned by 'p'; AND THEIR COUNTS, e.g., {(00:3),(01:8),(11:3))}.
getData() - Method in class meka.gui.explorer.AbstractExplorerTab
Returns the current data.
getDatasetName(Instances) - Static method in class meka.core.MLUtils
GetDataSetName - Look for name in the 'relationName' in format 'dataset-name: options'
getDatasetOptions(Instances) - Static method in class meka.core.MLUtils
GetDataSetOptions - Look for options in the 'relationName' in format 'dataset-name: options'
getDownSampleRatio() - Method in class meka.classifiers.multilabel.CCq
Get the downsample ratio
getE() - Method in class meka.classifiers.multilabel.NN.AbstractNeuralNet
 
getElementAt(int) - Method in class meka.gui.core.ResultHistoryList.ResultHistoryModel
Returns the element at the specified location.
getEmptyIcon() - Static method in class meka.gui.core.GUIHelper
Returns the ImageIcon for the empty icon.
getExternalIcon(String) - Static method in class meka.gui.core.GUIHelper
Returns an ImageIcon from the given name.
getFolds() - Method in class meka.gui.explorer.ClassifyTabOptions
Returns the currently set folds value.
getH() - Method in class meka.classifiers.multilabel.NN.AbstractNeuralNet
 
getHistory() - Method in class meka.gui.core.ResultHistoryList.ResultHistoryModel
Returns the underlying history.
getI() - Method in class meka.classifiers.multilabel.CDN
GetI - Get the number of iterations.
getI() - Method in class meka.classifiers.multitarget.SCC
 
getIc() - Method in class meka.classifiers.multilabel.CDN
GetIc - Get the number of collection iterations.
getIcon(Class) - Static method in class meka.gui.core.GUIHelper
Returns an ImageIcon for the given class.
getIcon(String) - Static method in class meka.gui.core.GUIHelper
Returns an ImageIcon from the given name.
getImageFilename(String) - Static method in class meka.gui.core.GUIHelper
Adds the path of the images directory to the name of the image.
getInferenceInterations() - Method in class meka.classifiers.multilabel.MCC
Get the inference iterations
getInfo(String) - Method in class meka.core.Result
GetInfo.
getIntegerOption(String, int) - Static method in class meka.core.MLUtils
GetIntegerOption - parse 'op' to an integer if we can, else used default 'def'.
getIterations() - Method in class meka.classifiers.multilabel.meta.EM
 
getIv() - Method in class meka.classifiers.multitarget.SCC
 
getK() - Method in class meka.classifiers.multilabel.RAkEL
GetK - Get the k parameter (size of partitions).
getK(Instances) - Method in class meka.core.MLUtils
Get K - get the number of values associated with each label L.
getKey() - Method in class meka.experiment.MekaClassifierSplitEvaluator
Gets the key describing the current SplitEvaluator.
getKeyNames() - Method in class meka.experiment.MekaClassifierSplitEvaluator
Gets the names of each of the key columns produced for a single run.
getKeyTypes() - Method in class meka.experiment.MekaClassifierSplitEvaluator
Gets the data types of each of the key columns produced for a single run.
getLabel(int) - Method in class meka.gui.core.ParameterPanel
Returns the label for the parameter at the specified location.
getLogoIcon() - Static method in class meka.gui.core.GUIHelper
Returns an ImageIcon of the logo (icon sized image).
getLogoImage() - Static method in class meka.gui.core.GUIHelper
Returns an ImageIcon of the logo (large image).
getM() - Method in class meka.classifiers.multilabel.PMCC
Get the population size
getM() - Method in class meka.classifiers.multilabel.RAkEL
GetM - Get the M parameter (number of subsets).
getMenuBar() - Method in class meka.gui.explorer.Explorer
Returns the menu bar to use.
getMethod() - Method in class meka.classifiers.multilabel.MULAN
 
getMLStats(double[][], int[][], String, String) - Static method in class meka.core.MLEvalUtils
GetMLStats - Given predictions and corresponding true values and a threshold string, retreive statistics.
getMLStats(double[][], int[][], double[], String) - Static method in class meka.core.MLEvalUtils
GetMLStats - Given predictions and corresponding true values and a threshold string, retreive statistics.
getMnemonic(String) - Static method in class meka.gui.core.GUIHelper
Returns the mnemonic for this caption, preceded by an underscore "_".
getMonospacedFont() - Static method in class meka.gui.core.GUIHelper
Returns the system wide Monospaced font.
getMTStats(double[][], int[][], String) - Static method in class meka.core.MLEvalUtils
GetMTStats - Given multi-target predictions and corresponding true values, retreive evaluation statistics.
getN() - Method in class meka.classifiers.multilabel.NN.AbstractDeepNeuralNet
 
getN() - Method in class meka.classifiers.multilabel.PS
GetN - Get the subsampling value N.
getN() - Method in class meka.classifiers.multitarget.SCC
 
getNeighbours(int) - Method in class meka.classifiers.multilabel.cc.Trellis
Get the neighbouring variables of a given index.
getNeighbours(String, ArrayList<String>, int) - Static method in class meka.filters.multilabel.SuperNodeFilter
GetNeighbours - return from set S, label-vectors closest to y, having no more different than 'n' bits different.
getNeighbours(String, HashMap<String, Integer>, int) - Static method in class meka.filters.multilabel.SuperNodeFilter
GetNeighbours - return from set S (the keySet of HashMap C), label-vectors closest to y, having no more different than 'n' bits different.
getNumIterations() - Method in class meka.classifiers.multilabel.meta.MultilabelMetaClassifier
 
getOptions() - Method in class meka.classifiers.multilabel.BCC
 
getOptions() - Method in class meka.classifiers.multilabel.BRq
 
getOptions() - Method in class meka.classifiers.multilabel.CCq
 
getOptions() - Method in class meka.classifiers.multilabel.CDN
 
getOptions() - Method in class meka.classifiers.multilabel.CDT
 
getOptions() - Method in class meka.classifiers.multilabel.CT
 
getOptions() - Method in class meka.classifiers.multilabel.incremental.PSUpdateable
 
getOptions() - Method in class meka.classifiers.multilabel.MCC
 
getOptions() - Method in class meka.classifiers.multilabel.meta.EM
 
getOptions() - Method in class meka.classifiers.multilabel.meta.MultilabelMetaClassifier
 
getOptions() - Method in class meka.classifiers.multilabel.meta.RandomSubspaceML
 
getOptions() - Method in class meka.classifiers.multilabel.MULAN
 
getOptions() - Method in class meka.classifiers.multilabel.NN.AbstractDeepNeuralNet
 
getOptions() - Method in class meka.classifiers.multilabel.NN.AbstractNeuralNet
 
getOptions() - Method in class meka.classifiers.multilabel.PMCC
 
getOptions() - Method in class meka.classifiers.multilabel.PS
 
getOptions() - Method in class meka.classifiers.multilabel.RAkEL
 
getOptions() - Method in class meka.classifiers.multitarget.SCC
 
getOptions() - Method in class meka.filters.unsupervised.attribute.MekaClassAttributes
Gets the current settings of the filter.
getOwner() - Method in class meka.gui.explorer.AbstractExplorerTab
Returns the Explorer instance this tab belongs to.
getOwner() - Method in class meka.gui.explorer.AbstractThreadedExplorerTab.WorkerThread
Returns the tab this thread belongs to.
getP() - Method in class meka.classifiers.multilabel.PS
GetP - Get the pruning value P.
getP() - Method in class meka.classifiers.multitarget.SCC
 
getP(Instances) - Static method in class meka.core.StatUtils
GetP - Get a pairwise empirical joint-probability matrix P[][] from dataset D.
getP(int[][], int) - Static method in class meka.core.StatUtils
 
getP() - Method in class meka.filters.multilabel.SuperNodeFilter
 
getParameter(int) - Method in class meka.gui.core.ParameterPanel
Returns the parameter component at the specified location.
getParameterCount() - Method in class meka.gui.core.ParameterPanel
Returns the number of parameters currently displayed.
getParent(Container, Class) - Static method in class meka.gui.core.GUIHelper
Tries to determine the parent this panel is part of.
getParentDialog(Container) - Static method in class meka.gui.core.GUIHelper
Tries to determine the dialog this panel is part of.
getParentDialog() - Method in class meka.gui.core.MekaPanel
Tries to determine the dialog this panel is part of.
getParentFrame(Container) - Static method in class meka.gui.core.GUIHelper
Tries to determine the frame the container is part of.
getParentFrame() - Method in class meka.gui.core.MekaPanel
Tries to determine the frame this panel is part of.
getParentsY() - Method in class meka.classifiers.multilabel.cc.CNode
getParentsY - get the parents (indices) of this node
getPartitionFromDatasetHierarchy(Instances) - Static method in class meka.core.SuperLabelUtils
Get Partition From Dataset Hierarchy - assumes attributes are hierarchically arranged with '.'.
getPreferredDimensionJSpinner() - Method in class meka.gui.core.ParameterPanel
Returns the preferred dimension for JSpinner and derived classes.
getPreferredScrollableViewportSize() - Method in class meka.gui.components.AttributeSelectionPanel
 
getRandomize() - Method in class meka.gui.explorer.ClassifyTabOptions
Returns the currently set Randomize value.
getResult(Instances, Instances) - Method in class meka.experiment.MekaClassifierSplitEvaluator
Gets the results for the supplied train and test datasets.
getResultAsString(Result) - Static method in class meka.core.Result
GetResultAsString - print out each prediction in a Result along with its true labelset.
getResultAsString(Result, int) - Static method in class meka.core.Result
GetResultAsString - print out each prediction in a Result (to a certain number of decimal points) along with its true labelset.
getResultAt(int) - Method in class meka.gui.core.ResultHistoryList
Returns the result at the specified location.
getResultAt(int) - Method in class meka.gui.core.ResultHistoryList.ResultHistoryModel
Returns the element at the specified location.
getResultNames() - Method in class meka.experiment.MekaClassifierSplitEvaluator
Gets the names of each of the result columns produced for a single run.
getResultTypes() - Method in class meka.experiment.MekaClassifierSplitEvaluator
Gets the data types of each of the result columns produced for a single run.
getRevision() - Method in class meka.classifiers.multilabel.BR
 
getRevision() - Method in class meka.classifiers.multilabel.BRq
 
getRevision() - Method in class meka.classifiers.multilabel.CCq
 
getRevision() - Method in class meka.classifiers.multilabel.CDN
 
getRevision() - Method in class meka.classifiers.multilabel.CDT
 
getRevision() - Method in class meka.classifiers.multilabel.HASEL
 
getRevision() - Method in class meka.classifiers.multilabel.LC
 
getRevision() - Method in class meka.classifiers.multilabel.MajorityLabelset
 
getRevision() - Method in class meka.classifiers.multilabel.meta.BaggingML
 
getRevision() - Method in class meka.classifiers.multilabel.meta.BaggingMLdup
 
getRevision() - Method in class meka.classifiers.multilabel.meta.CM
 
getRevision() - Method in class meka.classifiers.multilabel.meta.EM
 
getRevision() - Method in class meka.classifiers.multilabel.meta.EnsembleML
 
getRevision() - Method in class meka.classifiers.multilabel.meta.MBR
 
getRevision() - Method in class meka.classifiers.multilabel.meta.RandomSubspaceML
 
getRevision() - Method in class meka.classifiers.multilabel.meta.SubsetMapper
 
getRevision() - Method in class meka.classifiers.multilabel.MULAN
 
getRevision() - Method in class meka.classifiers.multilabel.MultilabelClassifier
 
getRevision() - Method in class meka.classifiers.multilabel.PS
 
getRevision() - Method in class meka.classifiers.multilabel.PSt
 
getRevision() - Method in class meka.classifiers.multilabel.RAkEL
 
getRevision() - Method in class meka.classifiers.multilabel.RAkELd
 
getRevision() - Method in class meka.classifiers.multilabel.RT
 
getRevision() - Method in class meka.classifiers.multitarget.BCC
 
getRevision() - Method in class meka.classifiers.multitarget.CC
 
getRevision() - Method in class meka.classifiers.multitarget.CCp
 
getRevision() - Method in class meka.classifiers.multitarget.CR
 
getRevision() - Method in class meka.classifiers.multitarget.meta.BaggingMT
 
getRevision() - Method in class meka.classifiers.multitarget.meta.EnsembleMT
 
getRevision() - Method in class meka.classifiers.multitarget.NSR
 
getRevision() - Method in class meka.experiment.MekaClassifierSplitEvaluator
Returns the revision string.
getRevision() - Method in class meka.experiment.MekaCrossValidationSplitResultProducer
Returns the revision string.
getRevision() - Method in class meka.experiment.MekaExperiment
Returns the revision string.
getRevision() - Method in class meka.experiment.MekaRandomSplitResultProducer
Returns the revision string.
getRevision() - Method in class meka.filters.unsupervised.attribute.MekaClassAttributes
 
getSeed() - Method in class meka.classifiers.multilabel.BRq
 
getSeed() - Method in class meka.classifiers.multilabel.CC
 
getSeed() - Method in class meka.classifiers.multilabel.CCq
 
getSeed() - Method in class meka.classifiers.multilabel.CDN
 
getSeed() - Method in class meka.classifiers.multilabel.meta.DeepML
 
getSeed() - Method in class meka.classifiers.multilabel.meta.MultilabelMetaClassifier
 
getSeed() - Method in class meka.classifiers.multilabel.PS
 
getSeed() - Method in class meka.classifiers.multilabel.RAkEL
 
getSeed() - Method in class meka.classifiers.multitarget.CCp
 
getSeed() - Method in class meka.classifiers.multitarget.SCC
 
getSeed() - Method in class meka.gui.explorer.ClassifyTabOptions
Returns the currently set seed value.
getSelectedAttributes() - Method in class meka.gui.components.AttributeSelectionPanel
Gets an array containing the indices of all selected attributes.
getSelectionModel() - Method in class meka.gui.components.AttributeSelectionPanel
Gets the selection model used by the table.
getSize() - Method in class meka.gui.core.ResultHistoryList.ResultHistoryModel
Returns the number of history entries.
getSortedSubsets(LabelSet, Set<LabelSet>, Comparator) - Static method in class meka.core.PSUtils
Get Sorted Subsets - get all subsets of 'y' in the set 'set'; sorted according to 'cmp'.
getSortedSubsets(LabelSet, HashMap<LabelSet, Integer>) - Static method in class meka.core.PSUtils
Get Sorted Subsets - get all subsets of 'y' in the set 'set'; sorted according to length, and counts in 'map'.
getSplitPercentage() - Method in class meka.gui.explorer.ClassifyTabOptions
Returns the currently set percentage value.
getStats(Result, String) - Static method in class meka.core.Result
GetStats.
getStatusBar() - Method in class meka.gui.explorer.Explorer
Returns the status bar.
getSubsets(LabelSet, Set<LabelSet>) - Static method in class meka.core.PSUtils
Get Subsets - get all subsets of 'y' in the set 'set'.
getSuffix(int) - Method in class meka.gui.core.ResultHistory
Returns the specified suffix.
getSuffixAt(int) - Method in class meka.gui.core.ResultHistoryList
Returns the suffix at the specified location.
getSuffixAt(int) - Method in class meka.gui.core.ResultHistoryList.ResultHistoryModel
Returns the suffix at the specified location.
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class meka.gui.components.AttributeSelectionPanel.CellRenderer
 
getTableModel() - Method in class meka.gui.components.AttributeSelectionPanel
Get the table model in use (or null if no instances have been set yet).
getTechnicalInformation() - Method in class meka.classifiers.multilabel.BCC
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.BRq
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.CC
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.CCq
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.CDN
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.CDT
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.CT
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.DBPNN
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.incremental.meta.BaggingMLUpdateable
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.MCC
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.meta.DeepML
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.meta.EM
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.meta.MBR
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.meta.RandomSubspaceML
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.meta.SubsetMapper
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.PCC
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.PS
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.PSt
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.RAkEL
 
getTechnicalInformation() - Method in class meka.classifiers.multilabel.RAkELd
 
getTechnicalInformation() - Method in class meka.classifiers.multitarget.SCC
 
getTemplate() - Method in class meka.classifiers.multilabel.MultilabelClassifier
 
getTemplate() - Method in class meka.filters.multilabel.SuperNodeFilter
 
getTestFile() - Method in class meka.gui.explorer.ClassifyTabOptions
Returns the currently selected Test File (if any).
getThreshold(ArrayList<double[]>, Instances, String) - Static method in class meka.core.MLEvalUtils
GetThreshold - Get a threshold from a Threshold OPtion string 'top'.
getTimestamp(int) - Method in class meka.gui.core.ResultHistory
Returns the specified timestamp.
getTimestampAt(int) - Method in class meka.gui.core.ResultHistoryList.ResultHistoryModel
Returns the element at the specified location.
getTitle() - Method in class meka.gui.explorer.AbstractExplorerTab
Returns the title of the tab.
getTitle() - Method in class meka.gui.explorer.ClassifyTab
Returns the title of the tab.
getTitle() - Method in class meka.gui.explorer.PreprocessTab
Returns the title of the tab.
getTitle() - Method in class meka.gui.explorer.VisualizeTab
Returns the title of the tab.
getTOP() - Method in class meka.gui.explorer.ClassifyTabOptions
Returns the currently set seed value.
getTopNSubsets(String, HashMap<String, Integer>, int) - Static method in class meka.classifiers.multitarget.NSR
GetTopNSubsets - return the top N subsets which differ from y by a single class value, ranked by the frequency storte in masterCombinations.
getTopNSubsets(LabelSet, HashMap<LabelSet, Integer>, int) - Static method in class meka.core.PSUtils
GetTopNSubsets - Don't cover all (like cover(y,map), rather only the top 'n')
getTopNSubsetsAsSet(LabelSet, HashMap<LabelSet, Integer>, int) - Static method in class meka.core.PSUtils
 
getTopSubset(LabelSet, HashMap<LabelSet, Integer>) - Static method in class meka.core.PSUtils
 
getTotalNumClasses() - Method in class meka.experiment.MekaClassifierSplitEvaluator
Returns the overal number of classes.
getTotalNumClasses() - Method in class meka.experiment.MekaCrossValidationSplitResultProducer
Returns the overal number of classes.
getTotalNumClasses() - Method in class meka.experiment.MekaRandomSplitResultProducer
Returns the overal number of classes.
getTotalNumClasses() - Method in interface meka.experiment.MekaResultProducer
Returns the overal number of classes.
getTotalNumClasses() - Method in interface meka.experiment.MekaSplitEvaluator
Returns the overal number of classes.
getTransformTemplates(Instance) - Method in class meka.classifiers.multilabel.CC
GetTransformTemplates - pre-transform the instance x, to make things faster.
getType() - Method in class meka.classifiers.multilabel.CDT
GetI - Get the neighbourhood type (number of neighbours for each node).
getType() - Method in class meka.classifiers.multilabel.CT
GetI - Get the neighbourhood type (number of neighbours for each node).
getValue(String) - Method in class meka.core.Result
AddValue.
getValues(Instances, int[], int) - Static method in class meka.filters.multilabel.SuperNodeFilter
Return a set of all the combinations of attributes at 'indices' in 'D', pruned by 'p'; e.g., {00,01,11}.
getVOP() - Method in class meka.gui.explorer.ClassifyTabOptions
Returns the currently set seed value.
getWidth() - Method in class meka.classifiers.multilabel.CDT
GetH - Get the trellis width.
getWidth() - Method in class meka.classifiers.multilabel.CT
GetH - Get the trellis width.
getXfromD(Instances) - Static method in class meka.core.MLUtils
GetXfromD - Extract attributes as a double X[][] from Instances D.
getxfromInstance(Instance) - Static method in class meka.core.MLUtils
GetxfromInstances - Extract attributes as a double x[] from an Instance.
getYfromD(Instances) - Static method in class meka.core.MLUtils
GetXfromD - Extract labels as a double Y[][] from Instances D.
globalInfo() - Method in class meka.classifiers.multilabel.BCC
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.BR
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.BRq
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.CC
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.CCq
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.CDN
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.CDT
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.CT
 
globalInfo() - Method in class meka.classifiers.multilabel.DBPNN
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.FW
 
globalInfo() - Method in class meka.classifiers.multilabel.HASEL
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.incremental.BRUpdateable
 
globalInfo() - Method in class meka.classifiers.multilabel.incremental.CCUpdateable
 
globalInfo() - Method in class meka.classifiers.multilabel.incremental.MajorityLabelsetUpdateable
 
globalInfo() - Method in class meka.classifiers.multilabel.incremental.meta.BaggingMLUpdateable
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.incremental.PSUpdateable
 
globalInfo() - Method in class meka.classifiers.multilabel.incremental.RTUpdateable
 
globalInfo() - Method in class meka.classifiers.multilabel.LC
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.MajorityLabelset
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.MCC
 
globalInfo() - Method in class meka.classifiers.multilabel.meta.BaggingML
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.meta.BaggingMLdup
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.meta.CM
 
globalInfo() - Method in class meka.classifiers.multilabel.meta.DeepML
 
globalInfo() - Method in class meka.classifiers.multilabel.meta.EM
 
globalInfo() - Method in class meka.classifiers.multilabel.meta.EnsembleML
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.meta.MBR
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.meta.MultilabelMetaClassifier
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.meta.RandomSubspaceML
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.meta.SubsetMapper
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.MULAN
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.MultilabelClassifier
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.PCC
 
globalInfo() - Method in class meka.classifiers.multilabel.PMCC
 
globalInfo() - Method in class meka.classifiers.multilabel.PS
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.PSt
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.RAkEL
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.RAkELd
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multilabel.RT
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multitarget.BCC
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multitarget.CC
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multitarget.CCp
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multitarget.CR
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multitarget.meta.BaggingMT
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multitarget.meta.EnsembleMT
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multitarget.NSR
Description to display in the GUI.
globalInfo() - Method in class meka.classifiers.multitarget.SCC
Description to display in the GUI.
globalInfo() - Method in class meka.experiment.MekaClassifierSplitEvaluator
Returns a string describing this split evaluator
globalInfo() - Method in class meka.filters.multilabel.SuperNodeFilter
 
globalInfo() - Method in class meka.filters.unsupervised.attribute.MekaClassAttributes
Returns a string describing this filter.
GUIHelper - Class in meka.gui.core
A little helper class for GUI related stuff.
GUIHelper() - Constructor for class meka.gui.core.GUIHelper
 

H

H(int[][], int, int, int) - Static method in class meka.core.StatUtils
H - Conditional Entropy H(y_j|y_k).
H(int[][], int) - Static method in class meka.core.StatUtils
H - Get a Conditional Entropy Matrix.
H(Instances) - Static method in class meka.core.StatUtils
H - Get a Conditional Entropy Matrix.
hasData() - Method in class meka.gui.explorer.AbstractExplorerTab
Returns whether data is currently present.
HASEL - Class in meka.classifiers.multilabel
HASEL - Partitions labels into subsets based on the dataset defined hierarchy.
HASEL() - Constructor for class meka.classifiers.multilabel.HASEL
 
hashCode() - Method in class meka.core.LabelSet
 
hashMapToString(HashMap<?, ?>, int) - Static method in class meka.core.MLUtils
HashMapToString - print out a HashMap nicely.
hashMapToString(HashMap<?, ?>) - Static method in class meka.core.MLUtils
 
hasImageFile(String) - Static method in class meka.gui.core.GUIHelper
Checks whether the image is available.
hasNoModifierKey(MouseEvent) - Static method in class meka.gui.core.MouseUtils
Checks whether no modified key is pressed.

I

I(int[][], int, int, int) - Static method in class meka.core.StatUtils
I - Mutual Information I(y_j;y_k).
I(double[][]) - Static method in class meka.core.StatUtils
I - Mutual Information -- fast version, must calcualte P[][] = getP(D) first.
I(double[][], int, int) - Static method in class meka.core.StatUtils
I - Mutual Information.
I(Instances, int, int) - Static method in class meka.core.StatUtils
I - Mutual Information.
I(Instances, int) - Static method in class meka.core.StatUtils
I - Get an Unconditional Depndency Matrix.
I(int[][], int) - Static method in class meka.core.StatUtils
I - Get a Mutual Information Matrix.
IMAGE_DIR - Static variable in class meka.gui.core.GUIHelper
the directory with the images.
IncrementalEvaluation - Class in meka.classifiers.multilabel.incremental
IncrementalEvaluation.java - For Evaluating Incremental (Updateable) Classifiers.
IncrementalEvaluation() - Constructor for class meka.classifiers.multilabel.incremental.IncrementalEvaluation
 
indices - Variable in class meka.classifiers.multilabel.cc.Trellis
 
indices - Variable in class meka.core.LabelSet
 
indices - Variable in class meka.core.SuperLabel
 
info - Variable in class meka.core.Result
 
initialize() - Method in class meka.experiment.MekaExperiment
Prepares an experiment for running, initializing current iterator settings.
initWeights(int, int, int[]) - Method in class meka.classifiers.multilabel.BPNN
InitWeights - Initialize a BPNN of H.length hidden layers with H[0], H[1], etc hidden units in each layer (W will be random, and of the corresponding dimensions).
invert(int[], int) - Static method in class meka.core.A
Invert - take the compliment of indices up to length L, e.g., if indices = [3,5,6], then invert(indices,7) = [1,2,4,7].
isDoubleClick(MouseEvent) - Static method in class meka.gui.core.MouseUtils
Checks whether the mouse event is a double-click event (with the left mouse button).
isLeftClick(MouseEvent) - Static method in class meka.gui.core.MouseUtils
Checks whether the mouse event is a left-click event.
isMiddleClick(MouseEvent) - Static method in class meka.gui.core.MouseUtils
Checks whether the mouse event is a middle/wheel-click event.
isMT(Instances) - Static method in class meka.classifiers.multilabel.Evaluation
IsMT - see if dataset D is multi-target (else only multi-label)
isRightClick(MouseEvent) - Static method in class meka.gui.core.MouseUtils
Checks whether the mouse event is a right-click event.
isRunning() - Method in class meka.gui.explorer.AbstractThreadedExplorerTab
Checks whether a task is currently running.

J

join(int[], int[]) - Static method in class meka.core.A
 
jPMF(Instances, int, int) - Static method in class meka.core.StatUtils
jPMF - Joint PMF.
jPMF(Instances, int, int, int) - Static method in class meka.core.StatUtils
Joint Distribution.

K

keepAttributesAt(Instance, int[], int) - Static method in class meka.core.MLUtils
 
keepAttributesAt(Instances, int[], int) - Static method in class meka.core.MLUtils
 
keepLabels(Instances, int, int[]) - Static method in class meka.core.F
Remove Indices - Remove some labels (assume they are the first L attributes) from D.

L

L - Variable in class meka.classifiers.multilabel.cc.Trellis
 
L - Variable in class meka.core.Result
 
L_Hamming(int[], int[]) - Static method in class meka.core.Metrics
Hamming loss.
L_Hamming(int[][], int[][]) - Static method in class meka.core.Metrics
Hamming loss.
L_JaccardDist(int[][], int[][]) - Static method in class meka.core.Metrics
Jaccard Distance -- the loss version of Jaccard Index
L_LogLoss(double, double, double) - Static method in class meka.core.Metrics
L_LogLoss - the log loss between real-valued confidence rpred and true prediction y.
L_LogLoss(int[][], double[][], double) - Static method in class meka.core.Metrics
L_LogLoss - the log loss between real-valued confidences Rpred and true predictions Y with a maximum penalty C [Important Note: Earlier versions of Meka only normalised by N, and not N*L as here].
L_LogLossD(int[][], double[][]) - Static method in class meka.core.Metrics
L_LogLoss - the log loss between real-valued confidences Rpred and true predictions Y with a maximum penalty based on the number of examples D [Important Note: Earlier versions of Meka only normalised by N, and not N*L as here].
L_LogLossL(int[][], double[][]) - Static method in class meka.core.Metrics
L_LogLoss - the log loss between real-valued confidences Rpred and true predictions Y with a maximum penalty based on the number of labels L [Important Note: Earlier versions of Meka only normalised by N, and not N*L as here].
L_MAE(int[], double[]) - Method in class meka.core.Metrics
MAE
L_MSE(int[], double[]) - Method in class meka.core.Metrics
MSE
L_OneError(int[][], double[][]) - Static method in class meka.core.Metrics
OneError -
L_RankLoss(int[][], double[][]) - Static method in class meka.core.Metrics
 
L_RankLoss(int[], double[]) - Static method in class meka.core.Metrics
 
L_RankLoss(int[], int[]) - Static method in class meka.core.Metrics
Rank Loss - the average fraction of labels which are not correctly ordered.
L_ZeroOne(int[], int[]) - Static method in class meka.core.Metrics
0/1 Loss.
L_ZeroOne(int[][], int[][]) - Static method in class meka.core.Metrics
0/1 Loss.
labelCardinalities(Instances) - Static method in class meka.core.MLUtils
LabelCardinalities - return the frequency of each label of dataset D.
labelCardinalities(ArrayList<int[]>) - Static method in class meka.core.MLUtils
LabelCardinalities - return the frequency of each label of dataset D.
labelCardinality(Instances) - Static method in class meka.core.MLUtils
LabelCardinality - return the label cardinality of dataset D.
labelCardinality(Instances, int) - Static method in class meka.core.MLUtils
LabelCardinality - return the label cardinality of dataset D of L labels.
labelCardinality(int[][], int) - Static method in class meka.core.MLUtils
LabelCardinality - return the average number of times the j-th label is relevant in label data Y.
labelCardinality(int[][]) - Static method in class meka.core.MLUtils
LabelCardinality - return the label cardinality of label data Y.
LabelSet - Class in meka.core
Comparator - A fast sparse labelset representation.
LabelSet() - Constructor for class meka.core.LabelSet
 
LabelSet(int[]) - Constructor for class meka.core.LabelSet
A new LabelSet, given a list of SORTED indices.
LabelSet(int[], boolean) - Constructor for class meka.core.LabelSet
A new LabelSet, indicating sort=true if indices they need to be sorted (i.e., are NOT sorted).
LabelSet(List<Integer>) - Constructor for class meka.core.LabelSet
 
LabelSet(Set<Integer>) - Constructor for class meka.core.LabelSet
 
LabelSetComparator - Class in meka.core
 
LabelSetComparator(HashMap<LabelSet, Integer>) - Constructor for class meka.core.LabelSetComparator
 
LabelVector - Class in meka.core
LabelVector - Multi-target compatible vector.
LabelVector(int[]) - Constructor for class meka.core.LabelVector
 
LC - Class in meka.classifiers.multilabel
LC.java - The LC (Label Combination) aka LP (Laber Powerset) Method.
LC() - Constructor for class meka.classifiers.multilabel.LC
 
LCTransformation(Instances) - Static method in class meka.core.PSUtils
 
LCTransformation(Instances, int) - Static method in class meka.core.PSUtils
 
LEAD(Instances, Result, String) - Static method in class meka.core.StatUtils
LEAD - Performs LEAD on dataset 'D', with corresponding gresult 'R', and dependency measurement type 'MDType'.
LEAD(Instances, Result) - Static method in class meka.core.StatUtils
 
LEAD(Instances, Classifier, Random) - Static method in class meka.core.StatUtils
LEAD - Performs LEAD on dataset 'D', using BR with base classifier 'h', under random seed 'r'.
LEAD(Instances, Classifier, Random, String) - Static method in class meka.core.StatUtils
 
LEAD2(Instances, Result) - Static method in class meka.core.StatUtils
LEAD.
likelihood(CC, Instances) - Method in class meka.classifiers.multilabel.MCC
Likelihood - Return a default score of h evaluated on D.
likelihood(CC, Instances, int) - Method in class meka.classifiers.multilabel.MCC
Likelihood - Return a score of choice (payoff_fn) of h evaluated on D.
linkTransform(Instances, int, int[]) - Static method in class meka.core.CCUtils
LinkTransform - prepare 'D' for training at a node 'j' of the chain, by excluding 'exl'.
linkTransformation(Instance, int[], Instances) - Static method in class meka.core.CCUtils
LinkTransform - prepare 'x' for testing at a node 'j' of the chain, by excluding 'exl'.
listOptions() - Method in class meka.classifiers.multilabel.BCC
 
listOptions() - Method in class meka.classifiers.multilabel.BRq
 
listOptions() - Method in class meka.classifiers.multilabel.CCq
 
listOptions() - Method in class meka.classifiers.multilabel.CDN
 
listOptions() - Method in class meka.classifiers.multilabel.CDT
 
listOptions() - Method in class meka.classifiers.multilabel.CT
 
listOptions() - Method in class meka.classifiers.multilabel.incremental.PSUpdateable
 
listOptions() - Method in class meka.classifiers.multilabel.MCC
 
listOptions() - Method in class meka.classifiers.multilabel.meta.EM
 
listOptions() - Method in class meka.classifiers.multilabel.meta.MultilabelMetaClassifier
 
listOptions() - Method in class meka.classifiers.multilabel.meta.RandomSubspaceML
 
listOptions() - Method in class meka.classifiers.multilabel.MULAN
 
listOptions() - Method in class meka.classifiers.multilabel.NN.AbstractDeepNeuralNet
 
listOptions() - Method in class meka.classifiers.multilabel.NN.AbstractNeuralNet
 
listOptions() - Method in class meka.classifiers.multilabel.PMCC
 
listOptions() - Method in class meka.classifiers.multilabel.PS
 
listOptions() - Method in class meka.classifiers.multilabel.RAkEL
 
listOptions() - Method in class meka.classifiers.multitarget.SCC
 
listOptions() - Method in class meka.filters.unsupervised.attribute.MekaClassAttributes
Returns an enumeration describing the available options.
loadDataset(String[]) - Static method in class meka.classifiers.multilabel.Evaluation
loadDataset - load a dataset, given command line option '-t' specifying an arff file.
loadDataset(String[], char) - Static method in class meka.classifiers.multilabel.Evaluation
loadDataset - load a dataset, given command line options specifying an arff file.
loadMap(String) - Static method in class meka.core.PSUtils
LoadMap - Load the HashMap stored in 'filename'.
loadObject(String) - Static method in class meka.core.MLUtils
Load Object - load the Object stored in 'filename'.

M

M - Class in meka.core
M.java - Handy matrix operations (on 2D arrays[][])
M() - Constructor for class meka.core.M
 
main(String[]) - Static method in class meka.classifiers.multilabel.BCC
 
main(String[]) - Static method in class meka.classifiers.multilabel.BPNN
 
main(String[]) - Static method in class meka.classifiers.multilabel.BR
 
main(String[]) - Static method in class meka.classifiers.multilabel.BRq
 
main(String[]) - Static method in class meka.classifiers.multilabel.cc.CNode
Main - run some tests.
main(String[]) - Static method in class meka.classifiers.multilabel.CC
 
main(String[]) - Static method in class meka.classifiers.multilabel.CCq
 
main(String[]) - Static method in class meka.classifiers.multilabel.CDN
 
main(String[]) - Static method in class meka.classifiers.multilabel.CDT
 
main(String[]) - Static method in class meka.classifiers.multilabel.CT
 
main(String[]) - Static method in class meka.classifiers.multilabel.DBPNN
 
main(String[]) - Static method in class meka.classifiers.multilabel.FW
 
main(String[]) - Static method in class meka.classifiers.multilabel.HASEL
 
main(String[]) - Static method in class meka.classifiers.multilabel.incremental.BRUpdateable
 
main(String[]) - Static method in class meka.classifiers.multilabel.incremental.CCUpdateable
 
main(String[]) - Static method in class meka.classifiers.multilabel.incremental.MajorityLabelsetUpdateable
 
main(String[]) - Static method in class meka.classifiers.multilabel.incremental.meta.BaggingMLUpdateable
 
main(String[]) - Static method in class meka.classifiers.multilabel.incremental.meta.BaggingMLUpdateableADWIN
 
main(String[]) - Static method in class meka.classifiers.multilabel.incremental.PSUpdateable
 
main(String[]) - Static method in class meka.classifiers.multilabel.incremental.RTUpdateable
 
main(String[]) - Static method in class meka.classifiers.multilabel.LC
 
main(String[]) - Static method in class meka.classifiers.multilabel.MajorityLabelset
 
main(String[]) - Static method in class meka.classifiers.multilabel.MCC
 
main(String[]) - Static method in class meka.classifiers.multilabel.meta.BaggingML
 
main(String[]) - Static method in class meka.classifiers.multilabel.meta.BaggingMLdup
 
main(String[]) - Static method in class meka.classifiers.multilabel.meta.CM
 
main(String[]) - Static method in class meka.classifiers.multilabel.meta.DeepML
 
main(String[]) - Static method in class meka.classifiers.multilabel.meta.EM
 
main(String[]) - Static method in class meka.classifiers.multilabel.meta.EnsembleML
 
main(String[]) - Static method in class meka.classifiers.multilabel.meta.MBR
 
main(String[]) - Static method in class meka.classifiers.multilabel.meta.RandomSubspaceML
 
main(String[]) - Static method in class meka.classifiers.multilabel.meta.SubsetMapper
 
main(String[]) - Static method in class meka.classifiers.multilabel.MULAN
 
main(String[]) - Static method in class meka.classifiers.multilabel.PCC
 
main(String[]) - Static method in class meka.classifiers.multilabel.PMCC
 
main(String[]) - Static method in class meka.classifiers.multilabel.PS
 
main(String[]) - Static method in class meka.classifiers.multilabel.PSt
 
main(String[]) - Static method in class meka.classifiers.multilabel.RAkEL
 
main(String[]) - Static method in class meka.classifiers.multilabel.RAkELd
 
main(String[]) - Static method in class meka.classifiers.multilabel.RT
 
main(String[]) - Static method in class meka.classifiers.multitarget.BCC
 
main(String[]) - Static method in class meka.classifiers.multitarget.CC
 
main(String[]) - Static method in class meka.classifiers.multitarget.CCp
 
main(String[]) - Static method in class meka.classifiers.multitarget.CR
 
main(String[]) - Static method in class meka.classifiers.multitarget.meta.BaggingMT
 
main(String[]) - Static method in class meka.classifiers.multitarget.meta.EnsembleMT
 
main(String[]) - Static method in class meka.classifiers.multitarget.NSR
 
main(String[]) - Static method in class meka.classifiers.multitarget.SCC
 
main(String[]) - Static method in class meka.core.Metrics
Do some tests.
main(String[]) - Static method in class meka.core.MLEvalUtils
Main - can use this function for writing tests during development.
main(String[]) - Static method in class meka.core.MLUtils
For retrieving some dataset statistics on the command line.
main(String[]) - Static method in class meka.core.PropsUtils
Allows some basic operations on properties files: read <props>- reads the specified props file and outputs it, e.g., "read meka/gui/goe/MekaEditors.props" find <props>- finds all occurrences of the specified props file and outputs them, e.g., "find meka/gui/goe/MekaEditors.props"
main(String[]) - Static method in class meka.core.StatUtils
Main - do some tests.
main(String[]) - Static method in class meka.experiment.Example
Performs random split and cross-validation experiment on the datasets provided as arguments.
main(String[]) - Static method in class meka.experiment.MekaExperiment
Configures/Runs the Experiment from the command line.
main(String[]) - Static method in class meka.filters.multilabel.SuperNodeFilter
 
main(String[]) - Static method in class meka.filters.unsupervised.attribute.MekaClassAttributes
runs the filter with the given arguments.
main(String[]) - Static method in class meka.gui.components.AttributeSelectionPanel
Tests the attribute selection panel from the command line.
main(String[]) - Static method in class meka.gui.explorer.Explorer
Starts the GUI.
main(String[]) - Static method in class meka.gui.goe.GenericObjectEditor
For testing only.
main(String[]) - Static method in class meka.gui.goe.GenericPropertiesCreator
For testing only.
MajorityLabelset - Class in meka.classifiers.multilabel
MajorityLabelset.java - The most simplest multi-label classifier.
MajorityLabelset() - Constructor for class meka.classifiers.multilabel.MajorityLabelset
 
MajorityLabelsetUpdateable - Class in meka.classifiers.multilabel.incremental
MajorityLabelsetUpdateable.java - Updateable version of MajorityLabelset.
MajorityLabelsetUpdateable() - Constructor for class meka.classifiers.multilabel.incremental.MajorityLabelsetUpdateable
 
make() - Method in class meka.classifiers.multilabel.cc.Trellis
 
make_sequence(int) - Static method in class meka.core.A
Make Sequence - Given L, generate and return new int[]{0,1,2,3,...,L-1}.
make_sequence(int, int) - Static method in class meka.core.A
Make Sequence - Generate and return new int[]{start,start+1,...,end-2,end-1}.
makeCopies(MultilabelClassifier, int) - Static method in class meka.classifiers.multilabel.MultilabelClassifier
Creates a given number of deep copies of the given multi-label classifier using serialization.
makeLabelSetMap(Instances) - Static method in class meka.core.PSUtils
 
makePartitionDataset(Instances, int[]) - Static method in class meka.core.SuperLabelUtils
Make Partition Dataset - out of dataset D, on indices part[].
makePartitionDataset(Instances, int[], int, int) - Static method in class meka.core.SuperLabelUtils
Make Partition Dataset - out of dataset D, on indices part[].
margDepMatrix(Instances, String) - Static method in class meka.core.StatUtils
MargDepMatrix - Get an Unconditional Depndency Matrix.
maxItem(HashMap<?, Double>) - Static method in class meka.core.MLUtils
maxItem - argmax function for a HashMap
MBR - Class in meka.classifiers.multilabel.meta
MBR.java - Meta BR: BR stacked with feature outputs into another BR.
MBR() - Constructor for class meka.classifiers.multilabel.meta.MBR
 
MCC - Class in meka.classifiers.multilabel
MCC.java - CC with Monte Carlo optimisation.
MCC() - Constructor for class meka.classifiers.multilabel.MCC
 
meka.classifiers.multilabel - package meka.classifiers.multilabel
 
meka.classifiers.multilabel.cc - package meka.classifiers.multilabel.cc
 
meka.classifiers.multilabel.incremental - package meka.classifiers.multilabel.incremental
 
meka.classifiers.multilabel.incremental.meta - package meka.classifiers.multilabel.incremental.meta
 
meka.classifiers.multilabel.meta - package meka.classifiers.multilabel.meta
 
meka.classifiers.multilabel.NN - package meka.classifiers.multilabel.NN
 
meka.classifiers.multitarget - package meka.classifiers.multitarget
 
meka.classifiers.multitarget.meta - package meka.classifiers.multitarget.meta
 
meka.core - package meka.core
 
meka.experiment - package meka.experiment
 
meka.filters.multilabel - package meka.filters.multilabel
 
meka.filters.unsupervised.attribute - package meka.filters.unsupervised.attribute
 
meka.gui.components - package meka.gui.components
 
meka.gui.core - package meka.gui.core
 
meka.gui.explorer - package meka.gui.explorer
 
meka.gui.goe - package meka.gui.goe
 
meka2mulan(Instances, int) - Static method in class meka.core.F
meka2mulan - Move L label attributes from the beginning to end of attribute space of an Instances.
meka2mulan(Instance, int) - Static method in class meka.core.F
meka2mulan - Move L label attributes from the beginning to end of attribute space of an Instance.
MEKA_GUIEDITORS_PROPERTY_FILE - Static variable in class meka.gui.goe.GenericObjectEditor
the properties files containing the class/editor mappings.
MekaClassAttributes - Class in meka.filters.unsupervised.attribute
Reorders attributes for MEKA to use as class attributes.
MekaClassAttributes() - Constructor for class meka.filters.unsupervised.attribute.MekaClassAttributes
 
MekaClassifierSplitEvaluator - Class in meka.experiment
A SplitEvaluator that produces results for a classification scheme on a nominal class attribute.
MekaClassifierSplitEvaluator() - Constructor for class meka.experiment.MekaClassifierSplitEvaluator
No args constructor.
MekaCrossValidationSplitResultProducer - Class in meka.experiment
Carries out one split of a repeated k-fold cross-validation, using the set SplitEvaluator to generate some results.
MekaCrossValidationSplitResultProducer() - Constructor for class meka.experiment.MekaCrossValidationSplitResultProducer
Initializes the producer.
MekaExperiment - Class in meka.experiment
Holds all the necessary configuration information for a standard type experiment.
MekaExperiment() - Constructor for class meka.experiment.MekaExperiment
 
MekaFileChooser - Class in meka.gui.core
A file chooser dialog with directory bookmarks.
MekaFileChooser() - Constructor for class meka.gui.core.MekaFileChooser
Constructs a MekaFileChooser pointing to the user's default directory.
MekaFileChooser(String) - Constructor for class meka.gui.core.MekaFileChooser
Constructs a MekaFileChooser using the given path.
MekaFileChooser(File) - Constructor for class meka.gui.core.MekaFileChooser
Constructs a MekaFileChooser using the given File as the path.
MekaPanel - Class in meka.gui.core
Extended JPanel.
MekaPanel() - Constructor for class meka.gui.core.MekaPanel
Initializes the GUI.
MekaRandomSplitResultProducer - Class in meka.experiment
Generates a single train/test split and calls the appropriate SplitEvaluator to generate some results.
MekaRandomSplitResultProducer() - Constructor for class meka.experiment.MekaRandomSplitResultProducer
 
MekaResultProducer - Interface in meka.experiment
Interface for MEKA ResultProducer classes that need to know about the overall number of classes.
MekaSplitEvaluator - Interface in meka.experiment
Interface for MEKA split evaluators.
mergeLabels(Instances, int[][], int, int) - Static method in class meka.filters.multilabel.SuperNodeFilter
Merge Labels - Make a new 'D', with labels made into superlabels, according to partition 'indices', and pruning values 'p' and 'n'.
mergeLabels(Instances, int, int, int) - Static method in class meka.filters.multilabel.SuperNodeFilter
Merge Labels.
methodTipText() - Method in class meka.classifiers.multilabel.MULAN
 
Metrics - Class in meka.core
Metrics.java - Evaluation Metrics.
Metrics() - Constructor for class meka.core.Metrics
 
minus(LabelSet) - Method in class meka.core.LabelSet
 
minus(int[], int[]) - Static method in class meka.core.LabelSet
Minus aka Set Difference, e.g., [3,4,7,9] \ [3,7] = [4,9].
MLEvalUtils - Class in meka.core
MLEvalUtils - Utility functions for Evaluation.
MLEvalUtils() - Constructor for class meka.core.MLEvalUtils
 
MLUtils - Class in meka.core
MLUtils - Helpful functions for dealing with multi-labelled data.
MLUtils() - Constructor for class meka.core.MLUtils
 
MNEMONIC_INDICATOR - Static variable in class meka.gui.core.GUIHelper
the mnemonic character indicator.
mode(int[]) - Static method in class meka.core.A
Mode
mostCommonCombination(Instances) - Static method in class meka.core.MLUtils
MostCommonCombination - Most common label combination in D.
mostCommonCombination(Instances, int) - Static method in class meka.core.MLUtils
MostCommonCombination - Most common label combination in D (of L labels).
MouseUtils - Class in meka.gui.core
Helper class for mouse events.
MouseUtils() - Constructor for class meka.gui.core.MouseUtils
 
MULAN - Class in meka.classifiers.multilabel
MULAN.java - A wrapper for MULAN classifiers MULAN.
MULAN() - Constructor for class meka.classifiers.multilabel.MULAN
 
mulan2meka(Instances, int) - Static method in class meka.core.F
mulan2meka - Move label attributes from the End to the Beginning of attribute space (MULAN format to MEKA format).
MultilabelClassifier - Class in meka.classifiers.multilabel
MultilabelClassifier.java - A Multilabel Classifier.
MultilabelClassifier() - Constructor for class meka.classifiers.multilabel.MultilabelClassifier
 
MultilabelMetaClassifier - Class in meka.classifiers.multilabel.meta
MultilabelMetaClassifier.java - For ensembles of multi-label methods.
MultilabelMetaClassifier() - Constructor for class meka.classifiers.multilabel.meta.MultilabelMetaClassifier
 
multiply(double[][], double) - Static method in class meka.core.M
Multiply - multiply each value in A[][] by constant K.
MultiTargetCapable - Interface in meka.classifiers.multilabel
MultiTargetCapable.java - A multi-label Classifier that can also handle generic multi-target data.
MultiTargetClassifier - Interface in meka.classifiers.multitarget
MultiTargetClassifier.java - A Multi-target Classifier.

N

newPropertiesHandler() - Method in class meka.gui.core.FileChooserBookmarksPanel.FileChooserBookmarksFactory
Returns a new instance of the properties handler to be used.
nextIteration() - Method in class meka.experiment.MekaExperiment
Carries out the next iteration of the experiment.
notifyTabsDataChanged(AbstractExplorerTab, Instances) - Method in class meka.gui.explorer.Explorer
Notifies all the tabs that the data has changed.
NSR - Class in meka.classifiers.multitarget
NSR.java - The Nearest Set Relpacement (NSR) method.
NSR() - Constructor for class meka.classifiers.multitarget.NSR
 
numberOfUniqueCombinations(Instances) - Static method in class meka.core.MLUtils
Get the number of unique label combinations in a dataset

O

open(File, AbstractFileLoader) - Method in class meka.gui.explorer.Explorer
Opens the specified file.
open() - Method in class meka.gui.explorer.Explorer
Opens a dataset.
openHomepage() - Method in class meka.gui.explorer.Explorer
Opens the homepage in a browser.
orderTrellis(Trellis, double[][], Random) - Static method in class meka.classifiers.multilabel.CT
OrderTrellis - order the trellis according to marginal label dependencies.
output - Variable in class meka.core.Result
 

P

P(double[][], int[]) - Static method in class meka.core.StatUtils
P - Empirical prior.
P(double[][], int[], int[]) - Static method in class meka.core.StatUtils
P - Empirical prior.
p(double[][], int, int) - Static method in class meka.core.StatUtils
p - Empirical prior.
p(Instances, int, int) - Static method in class meka.core.StatUtils
p - Empirical prior.
P(double[][], int, int, int, int) - Static method in class meka.core.StatUtils
P - Empirical joint.
P(Instances, int, int, int, int) - Static method in class meka.core.StatUtils
p - Empirical joint.
P(Instances, int[], int[]) - Static method in class meka.core.StatUtils
P - Empirical joint.
P_Accuracy(int[], int[]) - Static method in class meka.core.Metrics
Jaccard Index -- often simply called multi-label 'accuracy'.
P_Accuracy(int[][], int[][]) - Static method in class meka.core.Metrics
Jaccard Index -- often simply called multi-label 'accuracy'.
P_AveragePrecision(int[][], double[][]) - Static method in class meka.core.Metrics
 
P_AveragePrecision(int[], double[]) - Static method in class meka.core.Metrics
 
P_AveragePrecision(int[], int[]) - Static method in class meka.core.Metrics
Average Precision - computes for each relevant label the percentage of relevant labels among all labels that are ranked before it.
P_ExactMatch(int[][], int[][]) - Static method in class meka.core.Metrics
Exact Match, i.e., 1 - [0/1 Loss].
P_FalseNegatives(int[], int[]) - Static method in class meka.core.Metrics
P_FalseNegatives - 0 but supposed to be 1 (the length of ypred \ y).
P_FalsePositives(int[], int[]) - Static method in class meka.core.Metrics
P_FalsePositives - 1 but supposed to be 0 (the length of y \ ypred).
P_FmacroAvgD(int[][], int[][]) - Static method in class meka.core.Metrics
F-Measure Macro Averaged by D - The F-measure macro averaged by example.
P_FmacroAvgL(int[][], int[][]) - Static method in class meka.core.Metrics
F-Measure Macro Averaged by L - The 'standard' macro average.
P_FmicroAvg(int[][], int[][]) - Static method in class meka.core.Metrics
P_FmicroAvg - Micro Averaged F-measure (F1, as if all labels in the dataset formed a single vector)
P_Hamming(int[][], int[][]) - Static method in class meka.core.Metrics
Hamming score aka label accuracy.
P_Hamming(int[][], int[][], int) - Static method in class meka.core.Metrics
Hamming score aka label accuracy.
P_Harmonic(int[], int[]) - Static method in class meka.core.Metrics
Harmonic Accuracy.
P_Harmonic(int[][], int[][], int) - Static method in class meka.core.Metrics
Harmonic Accuracy -- for the j-th label.
P_Harmonic(int[][], int[][]) - Static method in class meka.core.Metrics
Harmonic Accuracy -- average over all labels.
P_JaccardIndex(int[][], int[][]) - Static method in class meka.core.Metrics
Jaccard Index -- often simply called multi-label 'accuracy'.
P_LogLikelihood(int[], double[]) - Method in class meka.core.Metrics
Log Likelihood
P_Precision(int[], int[]) - Static method in class meka.core.Metrics
P_Precision - (retrieved AND relevant) / retrieved
P_Precision(int[][], int[][], int) - Static method in class meka.core.Metrics
P_Precision - (retrieved AND relevant) / retrieved
P_Recall(int[], int[]) - Static method in class meka.core.Metrics
P_Recall - (retrieved AND relevant) / relevant
P_Recall(int[][], int[][], int) - Static method in class meka.core.Metrics
P_Recall - (retrieved AND relevant) / relevant
P_TrueNegatives(int[], int[]) - Static method in class meka.core.Metrics
P_TrueNegatives - 0 and supposed to be 0.
P_TruePositives(int[], int[]) - Static method in class meka.core.Metrics
P_TruePositives - 1 and supposed to be 1 (the intersection, i.e., logical AND).
ParameterPanel - Class in meka.gui.core
A panel that lists one parameter (label and component or just AbstractChooserPanel) per row.
ParameterPanel() - Constructor for class meka.gui.core.ParameterPanel
Initializes the panel.
ParameterPanel(int, int) - Constructor for class meka.gui.core.ParameterPanel
Initializes the panel.
PCC - Class in meka.classifiers.multilabel
PCC.java - (Bayes Optimal) Probabalistic Classifier Chains.
PCC() - Constructor for class meka.classifiers.multilabel.PCC
 
peekClassIndex(File) - Static method in class meka.core.MLUtils
Attempts to determine the number of classes/class index from the specified file.
permute(String) - Static method in class meka.core.MLUtils
Permute -- e.g., permute("AB") returns ["AB","BA"]
pi(int[], Random, int, double) - Static method in class meka.classifiers.multilabel.PMCC
pi - proposal distribution; swap elements in s, depending on iteration t (temperature).
PMCC - Class in meka.classifiers.multilabel
PMCC.java - Like MCC but creates a population of M chains at training time (from Is candidate chains, using Monte Carlo sampling), and uses this population for inference at test time; If you are looking for a 'more typical' majority-vote ensemble method, use something like EnsembleML or BaggingML with MCC.
PMCC() - Constructor for class meka.classifiers.multilabel.PMCC
 
popy(double[]) - Method in class meka.classifiers.multilabel.BPNN
Forward Pass - Given input x_, get output y_.
popY(double[][]) - Method in class meka.classifiers.multilabel.BPNN
Forward Pass - Given input X_, get output Y_.
predictions - Variable in class meka.core.Result
 
prepareData(Instances) - Static method in class meka.core.MLUtils
Prepares the class index of the data.
PreprocessTab - Class in meka.gui.explorer
For preprocessing data.
PreprocessTab(Explorer) - Constructor for class meka.gui.explorer.PreprocessTab
Initializes the tab.
printAsTextMatrix(double[][]) - Static method in class meka.core.MLUtils
 
printOptions(Enumeration) - Static method in class meka.classifiers.multilabel.Evaluation
 
printOptions(Enumeration) - Static method in class meka.classifiers.multilabel.incremental.IncrementalEvaluation
 
probabilityForInstance(Instance, double[]) - Method in class meka.classifiers.multilabel.CC
ProbabilityForInstance - Force our way down the imposed 'path'.
process(Instances) - Method in class meka.filters.multilabel.SuperNodeFilter
 
product(double[]) - Static method in class meka.core.A
 
PropsUtils - Class in meka.core
Utility class for props files.
PropsUtils() - Constructor for class meka.core.PropsUtils
 
pruneCountHashMap(HashMap<?, Integer>, int) - Static method in class meka.core.MLUtils
PruneCountHashMap - remove entries in hm = {(label,count)} where 'count' is no more than 'p'.
pruneCountHashMapBasedAsAFractionOf(HashMap<?, Integer>, double, int) - Static method in class meka.core.MLUtils
 
PS - Class in meka.classifiers.multilabel
PS.java - The Pruned Sets Method.
PS() - Constructor for class meka.classifiers.multilabel.PS
 
PSt - Class in meka.classifiers.multilabel
PSt.java - Pruned Sets with a a threshold so as to be able to predict sets not seen in the training set.
PSt() - Constructor for class meka.classifiers.multilabel.PSt
 
PSTransformation(Instances, int, int) - Static method in class meka.core.PSUtils
 
PSTransformation(Instances, int, int, int) - Static method in class meka.core.PSUtils
 
PSTransformation(Instance, int, HashMap<LabelSet, Integer>, int) - Static method in class meka.core.PSUtils
 
PSTransformationOLD(Instances, int, int, int) - Static method in class meka.core.PSUtils
Deprecated.
PSUpdateable - Class in meka.classifiers.multilabel.incremental
PSUpdateable.java - Pruned Sets Updateable.
PSUpdateable() - Constructor for class meka.classifiers.multilabel.incremental.PSUpdateable
 
PSUtils - Class in meka.core
PSUtils.java - Handy Utils for working with Pruned Sets.
PSUtils() - Constructor for class meka.core.PSUtils
 
putTogether(int, int) - Method in class meka.classifiers.multilabel.cc.Trellis
 

R

RAkEL - Class in meka.classifiers.multilabel
RAkEL.java - Draws M subsets of size k from the set of labels, and trains PS upon each one, then combines label votes from these PS classifiers to get a label-vector prediction.
RAkEL() - Constructor for class meka.classifiers.multilabel.RAkEL
 
RAkELd - Class in meka.classifiers.multilabel
RAkELd - Takes RAndom partition of labELs; like RAkEL but labelsets are disjoint / non-overlapping subsets.
RAkELd() - Constructor for class meka.classifiers.multilabel.RAkELd
 
randomize(int[], Random) - Static method in class meka.core.MLUtils
Deprecated.
randomSplit(File[], String) - Static method in class meka.experiment.Example
Performs a random split on the datassets.
RandomSubspaceML - Class in meka.classifiers.multilabel.meta
RandomSubspaceML.java - Subsample the attribute space and instance space randomly for each ensemble member.
RandomSubspaceML() - Constructor for class meka.classifiers.multilabel.meta.RandomSubspaceML
 
read(String) - Static method in class meka.core.PropsUtils
Reads properties that inherit from three locations.
read(String) - Static method in class meka.experiment.MekaExperiment
Loads an experiment from a file.
rebuildClassifier(int[], Instances) - Method in class meka.classifiers.multilabel.CC
Rebuild - NOT YET IMPLEMENTED.
recombination(double[], int, LabelSet[]) - Static method in class meka.core.PSUtils
Convert Distribution - Given the posterior across combinations, return the distribution across labels.
recombination_t(double[], int, Instances) - Static method in class meka.core.PSUtils
Convert Distribution - Given the posterior across combinations, return the distribution across labels.
recombination_t(double[], int, LabelSet[]) - Static method in class meka.core.PSUtils
 
registerAllEditors() - Static method in class meka.gui.goe.GenericObjectEditor
registers all the editors in WEKA and MEKA.
remove(Instances, int[], boolean) - Static method in class meka.core.F
Remove Indices - Remove attribute indices 'indices' from 'D'.
remove(int) - Method in class meka.gui.core.ResultHistory
Removes the specified entry.
removeBias(double[][]) - Static method in class meka.core.M
 
removeElementAt(int) - Method in class meka.gui.core.ResultHistoryList.ResultHistoryModel
Removes the element at the specified location.
removeLabels(Instances, int) - Static method in class meka.core.F
Remove Indices - Remove ALL labels (assume they are the first L attributes) from D.
removeParameter(int) - Method in class meka.gui.core.ParameterPanel
Removes the parameter at the specified location.
reorderLabels(Instances, int[]) - Static method in class meka.core.F
ReorderLabels - swap values of y[1] to y[L] according to s[].
replaceZasAttributes(Instances, double[][], int) - Static method in class meka.core.MLUtils
ReplaceZasAttributes - data Z[][] will be the new attributes in D.
replaceZasClasses(Instances, double[][], int) - Static method in class meka.core.MLUtils
ReplaceZasClasses - data Z[][] will be the new class labels in D.
Result - Class in meka.core
Result - Stores predictions alongside true labels, for evaluation.
Result() - Constructor for class meka.core.Result
 
Result(int) - Constructor for class meka.core.Result
 
Result(int, int) - Constructor for class meka.core.Result
 
ResultHistory - Class in meka.gui.core
For maintaining a history of results.
ResultHistory() - Constructor for class meka.gui.core.ResultHistory
Initializes the history.
ResultHistoryList - Class in meka.gui.core
A specialized JList to display results.
ResultHistoryList() - Constructor for class meka.gui.core.ResultHistoryList
Initializes the list.
ResultHistoryList.ResultHistoryModel - Class in meka.gui.core
Model for results histories.
ResultHistoryList.ResultHistoryModel() - Constructor for class meka.gui.core.ResultHistoryList.ResultHistoryModel
Initializes the model with an empty history.
ResultHistoryList.ResultHistoryModel(ResultHistory) - Constructor for class meka.gui.core.ResultHistoryList.ResultHistoryModel
Initializes the model with the history.
reverse(int[]) - Static method in class meka.core.A
 
round(double[][]) - Static method in class meka.core.ThresholdUtils
Round - simply round numbers (e.g., 2.0 to 2) -- for multi-target data (where we don't *yet* use a threshold).
rowActual(int) - Method in class meka.core.Result
RowActual - Retrive the true values for the i-th instance.
rowPrediction(int, double) - Method in class meka.core.Result
RowPrediction - Retrive the predicted values for the i-th instance according to threshold t.
rowPrediction(int) - Method in class meka.core.Result
RowPrediction - Retrive the predicted values for the i-th instance according to pre-calibrated/chosen threshold.
rowRanking(int) - Method in class meka.core.Result
RowRanking - Retrive the prediction confidences for the i-th instance.
RT - Class in meka.classifiers.multilabel
RT.java - The 'Ranking + Threshold' classifier.
RT() - Constructor for class meka.classifiers.multilabel.RT
 
RTUpdateable - Class in meka.classifiers.multilabel.incremental
RTUpdateable.java - Updateable RT.
RTUpdateable() - Constructor for class meka.classifiers.multilabel.incremental.RTUpdateable
 
run() - Method in class meka.gui.core.StatusBar.Animation
Performs the animation.
run() - Method in class meka.gui.explorer.AbstractThreadedExplorerTab.WorkerThread
 
runClassifier(MultilabelClassifier, String[]) - Static method in class meka.classifiers.multilabel.MultilabelClassifier
Called by classifier's main() method upon initialisation from the command line.
runExperiment(MultilabelClassifier, String[]) - Static method in class meka.classifiers.multilabel.Evaluation
RunExperiment - Build and evaluate a model with command-line options.
runExperiment(MultilabelClassifier, String[]) - Static method in class meka.classifiers.multilabel.incremental.IncrementalEvaluation
RunExperiment - Build and evaluate a model with command-line options.

S

sample(Instance, double[], Random) - Method in class meka.classifiers.multilabel.cc.CNode
Sample the distribution given by #distribution(Instance, double[]).
sampleForInstance(Instance, Random) - Method in class meka.classifiers.multilabel.CC
SampleForInstance.
sampleForInstanceFast(Instance[], Random) - Method in class meka.classifiers.multilabel.CC
SampleForInstance - given an Instance template for each label, and a Random.
samplePMF(double[], Random) - Static method in class meka.core.A
Sample a PMF - select i with probabilitiy w[i] (w must be normalised)
save(File, AbstractFileSaver) - Method in class meka.gui.explorer.Explorer
Saves the data to the specified file.
save() - Method in class meka.gui.explorer.Explorer
Saves the current dataset.
saveAs() - Method in class meka.gui.explorer.Explorer
Saves the current dataset under a new name.
saveMap(String, HashMap<LabelSet, Integer>) - Static method in class meka.core.PSUtils
SaveMap - Save the HashMap 'map' to the file 'filename'.
saveObject(Object, String) - Static method in class meka.core.MLUtils
Save Object - save 'object' into file 'filename'.
SCC - Class in meka.classifiers.multitarget
SCC.java - Super Class Classifier (aka Super Node Classifier).
SCC() - Constructor for class meka.classifiers.multitarget.SCC
 
seedTipText() - Method in class meka.classifiers.multilabel.BRq
 
seedTipText() - Method in class meka.classifiers.multilabel.CCq
 
seedTipText() - Method in class meka.classifiers.multilabel.CDN
 
select(int[], int[]) - Static method in class meka.core.A
 
SemisupervisedClassifier - Interface in meka.classifiers.multilabel
SemisupervisedClassifier.java - An Interface for Multilabel Semisupervised Classifiers.
setAttributeIndices(String) - Method in class meka.filters.unsupervised.attribute.MekaClassAttributes
Set which attributes are to be used as MEKA class attributes.
setAttSizePercent(int) - Method in class meka.classifiers.multilabel.meta.RandomSubspaceML
Sets the percentage of attributes to sample from the original set.
setBagSizePercent(int) - Method in class meka.classifiers.multilabel.meta.MultilabelMetaClassifier
 
setChain(int[]) - Method in class meka.classifiers.multilabel.CC
 
setChain(int[]) - Method in class meka.classifiers.multitarget.CCp
 
setChainIterations(int) - Method in class meka.classifiers.multilabel.MCC
Set the iterations of s (chain order)
setClassifier(Classifier) - Method in class meka.experiment.MekaClassifierSplitEvaluator
Sets the classifier.
setData(Instances) - Method in class meka.gui.explorer.AbstractExplorerTab
Sets the data to use.
setDownSampleRatio(double) - Method in class meka.classifiers.multilabel.CCq
Set the downsample ratio
setE(int) - Method in class meka.classifiers.multilabel.NN.AbstractNeuralNet
 
setEnabled(boolean) - Method in class meka.gui.core.ParameterPanel
Sets the enabled state of the panel.
setFolds(int) - Method in class meka.gui.explorer.ClassifyTabOptions
Sets the folds value.
setH(int) - Method in class meka.classifiers.multilabel.NN.AbstractNeuralNet
 
setI(int) - Method in class meka.classifiers.multilabel.CDN
SetI - Sets the number of iterations.
setI(int) - Method in class meka.classifiers.multitarget.SCC
 
setIc(int) - Method in class meka.classifiers.multilabel.CDN
SetIc - Sets the number of collection iterations.
setIndices(int[][]) - Method in class meka.filters.multilabel.SuperNodeFilter
 
setInferenceInterations(int) - Method in class meka.classifiers.multilabel.MCC
Set the inference iterations
setInfo(String, String) - Method in class meka.core.Result
SetInfo.
setInstances(Instances) - Method in class meka.gui.components.AttributeSelectionPanel
Sets the instances who's attribute names will be displayed.
setIterations(int) - Method in class meka.classifiers.multilabel.meta.EM
 
setIv(int) - Method in class meka.classifiers.multitarget.SCC
 
setK(int) - Method in class meka.classifiers.multilabel.RAkEL
SetP - Sets the k parameter (size of partitions)
setLabelsMissing(Instances) - Static method in class meka.core.MLUtils
SetLabelsMissing - Set all labels in D to missing.
setLabelsMissing(Instance) - Static method in class meka.core.MLUtils
SetLabelsMissing - Set all labels in x to missing.
setLabelsMissing(Instance, int) - Static method in class meka.core.MLUtils
SetLabelsMissing - Set all (L) labels in x to missing.
setM(int) - Method in class meka.classifiers.multilabel.PMCC
Set the population size
setM(int) - Method in class meka.classifiers.multilabel.RAkEL
SetM - Sets the M parameter (number of subsets)
setMethod(String) - Method in class meka.classifiers.multilabel.MULAN
Set a prescribed MULAN classifier configuration.
setModel(ListModel) - Method in class meka.gui.core.ResultHistoryList
Sets the model to use, must derived from ResultHistoryList.ResultHistoryModel.
setN(int) - Method in class meka.classifiers.multilabel.PS
SetN - Sets the subsampling value N, the (maximum) number of frequent labelsets to subsample from the infrequent labelsets.
setN(int) - Method in class meka.classifiers.multitarget.SCC
 
setN(int) - Method in class meka.filters.multilabel.SuperNodeFilter
 
setNumIterations(int) - Method in class meka.classifiers.multilabel.meta.MultilabelMetaClassifier
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.BCC
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.BRq
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.CCq
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.CDN
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.CDT
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.CT
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.incremental.PSUpdateable
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.MCC
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.meta.EM
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.meta.MultilabelMetaClassifier
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.meta.RandomSubspaceML
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.MULAN
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.NN.AbstractDeepNeuralNet
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.NN.AbstractNeuralNet
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.PMCC
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.PS
 
setOptions(String[]) - Method in class meka.classifiers.multilabel.RAkEL
 
setOptions(String[]) - Method in class meka.classifiers.multitarget.SCC
 
setOptions(String[]) - Method in class meka.filters.unsupervised.attribute.MekaClassAttributes
Parses a given list of options.
setP(int) - Method in class meka.classifiers.multilabel.PS
SetP - Sets the pruning value P, defining an infrequent labelset as one which occurs less than P times in the data (P = 0 defaults to LC).
setP(int) - Method in class meka.classifiers.multitarget.SCC
 
setP(int) - Method in class meka.filters.multilabel.SuperNodeFilter
 
setPath(Instance, double[]) - Static method in class meka.core.CCUtils
SetPath - set 'path[]' into the first L attributes of Instance 'xy'.
setPreferredDimensionJSpinner(Dimension) - Method in class meka.gui.core.ParameterPanel
Sets the preferred dimension for JSpinner and derived classes.
setPreferredScrollableViewportSize(Dimension) - Method in class meka.gui.components.AttributeSelectionPanel
 
setRandomize(boolean) - Method in class meka.gui.explorer.ClassifyTabOptions
Sets the Randomize option
setSeed(int) - Method in class meka.classifiers.multilabel.BRq
 
setSeed(int) - Method in class meka.classifiers.multilabel.CC
 
setSeed(int) - Method in class meka.classifiers.multilabel.CCq
 
setSeed(int) - Method in class meka.classifiers.multilabel.CDN
 
setSeed(int) - Method in class meka.classifiers.multilabel.meta.DeepML
 
setSeed(int) - Method in class meka.classifiers.multilabel.meta.MultilabelMetaClassifier
 
setSeed(int) - Method in class meka.classifiers.multilabel.PS
SetSeed - Use random P and N values (in this case P and N arguments determine a range of values to select from randomly, e.g., -P 1-5 selects P randomly in {1,2,3,4,5}.
setSeed(int) - Method in class meka.classifiers.multilabel.RAkEL
 
setSeed(int) - Method in class meka.classifiers.multitarget.CCp
 
setSeed(int) - Method in class meka.classifiers.multitarget.SCC
 
setSeed(int) - Method in class meka.gui.explorer.ClassifyTabOptions
Sets the seed value.
setSelectedAttributes(boolean[]) - Method in class meka.gui.components.AttributeSelectionPanel
Set the selected attributes in the widget.
setSplitEvaluator(SplitEvaluator) - Method in class meka.experiment.MekaCrossValidationSplitResultProducer
Set the SplitEvaluator.
setSplitPercentage(double) - Method in class meka.gui.explorer.ClassifyTabOptions
Sets the percentage value.
setTemplate(Instance, Instances) - Static method in class meka.core.MLUtils
 
setTemplate(Instance, Instance, Instances) - Static method in class meka.core.MLUtils
SetTemplate - returns a copy of x_template, set with x's attributes, and set to dataset D_template (of which x_template) is a template of this.
setTestFile(Instances) - Method in class meka.gui.explorer.ClassifyTabOptions
Sets the Test File option
setTOP(String) - Method in class meka.gui.explorer.ClassifyTabOptions
Sets the threshold option
setTotalNumClasses(int) - Method in class meka.experiment.MekaClassifierSplitEvaluator
Sets the overal number of classes.
setTotalNumClasses(int) - Method in class meka.experiment.MekaCrossValidationSplitResultProducer
Sets the overal number of classes.
setTotalNumClasses(int) - Method in class meka.experiment.MekaRandomSplitResultProducer
Sets the overal number of classes.
setTotalNumClasses(int) - Method in interface meka.experiment.MekaResultProducer
Sets the overal number of classes.
setTotalNumClasses(int) - Method in interface meka.experiment.MekaSplitEvaluator
Sets the overal number of classes.
setType(int) - Method in class meka.classifiers.multilabel.CDT
SetI - Sets the neighbourhood type (number of neighbours for each node).
setType(int) - Method in class meka.classifiers.multilabel.CT
SetI - Sets the neighbourhood type (number of neighbours for each node).
setUnlabelledData(Instances) - Method in class meka.classifiers.multilabel.meta.EM
 
setUnlabelledData(Instances) - Method in interface meka.classifiers.multilabel.SemisupervisedClassifier
Set Unlabelled Data - provide unlabelled data prior to calling buildClassifier(Instances).
setValue(String, double) - Method in class meka.core.Result
SetValue.
setValues(Instance, double[], int) - Static method in class meka.core.MLUtils
SetValues - set the attribute values in Instsance x (having L labels) to z[].
setVOP(String) - Method in class meka.gui.explorer.ClassifyTabOptions
Sets the verbosity option
setWeights(Matrix[], int) - Method in class meka.classifiers.multilabel.BPNN
SetWeights - Initialize a BPNN with (pre-trained) weight matrices W (which also determines X dimensions).
setWidth(int) - Method in class meka.classifiers.multilabel.CDT
SetH - Sets the trellis width.
setWidth(int) - Method in class meka.classifiers.multilabel.CT
SetH - Sets the trellis width.
showStatus(String) - Method in class meka.gui.core.StatusBar
Displays the specified status message.
showStatus(String) - Method in class meka.gui.explorer.AbstractExplorerTab
Displays the specified status message.
shuffle(int[], Random) - Static method in class meka.core.A
Shuffle 'array' given Random 'r'
sigma(double) - Static method in class meka.classifiers.multitarget.SCC
Sigmoid / Logistic function
sigma(double) - Static method in class meka.core.M
Sigmoid / Logistic function
sigma(double[]) - Static method in class meka.core.M
Sigmoid function applied to vector
sigma(double[][]) - Static method in class meka.core.M
Sigmoid function applied to matrix (2D array)
sigma(Matrix) - Static method in class meka.core.M
Sigmoid function applied to Matrix
size() - Method in class meka.core.Result
 
size() - Method in class meka.gui.core.ResultHistory
Returns the number of history items stored.
sort(int[]) - Static method in class meka.core.A
 
SS(double[][]) - Static method in class meka.core.M
 
startBusy() - Method in class meka.gui.core.StatusBar
Starts the animated icon, without setting status message.
startBusy(String) - Method in class meka.gui.core.StatusBar
Starts the animated icon, setting the specified status message.
startBusy() - Method in class meka.gui.explorer.AbstractExplorerTab
Starts the animated icon, without setting status message.
startBusy(String) - Method in class meka.gui.explorer.AbstractExplorerTab
Starts the animated icon, setting the specified status message.
StatusBar - Class in meka.gui.core
Statusbar for displaying short notifications and an animated icon, e.g., when busy doing calculations.
StatusBar() - Constructor for class meka.gui.core.StatusBar
 
StatusBar.Animation - Class in meka.gui.core
the runnable for the animation.
StatusBar.Animation(JLabel, int) - Constructor for class meka.gui.core.StatusBar.Animation
Initializes the runnable.
StatUtils - Class in meka.core
StatUtils - Helpful statistical functions.
StatUtils() - Constructor for class meka.core.StatUtils
 
stop() - Method in class meka.gui.explorer.AbstractThreadedExplorerTab
Stops the execution.
stopAnimation() - Method in class meka.gui.core.StatusBar.Animation
Stops the animation.
subset(int[], int[]) - Static method in class meka.core.LabelSet
Subset - returns > 0 if y1 \subsetof y2
SubsetMapper - Class in meka.classifiers.multilabel.meta
Maps the output of a multi-label classifier to a known label combination using the hamming distance.
SubsetMapper() - Constructor for class meka.classifiers.multilabel.meta.SubsetMapper
 
subsetof(LabelSet) - Method in class meka.core.LabelSet
 
subtract(double[][], double[][]) - Static method in class meka.core.M
 
sum(double[]) - Static method in class meka.core.A
 
sum(int[]) - Static method in class meka.core.A
 
sumCounts(HashMap<LabelSet, Integer>) - Static method in class meka.core.PSUtils
Sum Counts - sum all the values in 'map'.
SuperLabel - Class in meka.core
SuperLabel - A meta label is a label composed of multiple labels, e.g., [3,7], which can take multiple values, e.g., [[0,0],[0,1],[1,1]].
SuperLabel(int[], int[][]) - Constructor for class meka.core.SuperLabel
SuperLabel
SuperLabel(int[], Enumeration<String>) - Constructor for class meka.core.SuperLabel
 
SuperLabel(int[], ArrayList<String>) - Constructor for class meka.core.SuperLabel
 
SuperLabelUtils - Class in meka.core
SuperLabelUtils.java - Handy Utils for working with Meta Labels.
SuperLabelUtils() - Constructor for class meka.core.SuperLabelUtils
 
SuperNodeFilter - Class in meka.filters.multilabel
SuperNodeFilter.java - Super Class Filter.
SuperNodeFilter() - Constructor for class meka.filters.multilabel.SuperNodeFilter
 
swap(int, int) - Method in class meka.classifiers.multilabel.cc.Trellis
 
swap(int[], int, int) - Static method in class meka.core.A
 
swap(int[], Random) - Static method in class meka.core.A
 

T

testCapabilities(Instances) - Method in class meka.classifiers.multilabel.MultilabelClassifier
TestCapabilities.
testClassifier(MultilabelClassifier, Instances) - Static method in class meka.classifiers.multilabel.Evaluation
TestClassifier - test classifier h on D_test
testClassifier(Classifier, Instances, Instances, int[][]) - Method in class meka.classifiers.multitarget.SCC
Test classifier h, on dataset D, under super-class partition 'partition'.
threshold(double[][], double) - Static method in class meka.core.M
Threshold - apply threshold t to matrix P[][].
threshold(double[][], double[]) - Static method in class meka.core.ThresholdUtils
Threshold - returns the labels after the prediction-confidence vector is passed through a vector of thresholds.
threshold(double[][], double) - Static method in class meka.core.ThresholdUtils
Threshold - returns the labels after the prediction-confidence vector is passed through threshold.
threshold(double[], String) - Static method in class meka.core.ThresholdUtils
Threshold - returns the labels after the prediction-confidence vector is passed through threshold(s).
thresholdStringToArray(String, int) - Static method in class meka.core.ThresholdUtils
ThresholdStringToArray - parse a threshold option string to an array of L thresholds (one for each label variable).
ThresholdUtils - Class in meka.core
ThresholdUtils - Helpful functions for calibrating thresholds.
ThresholdUtils() - Constructor for class meka.core.ThresholdUtils
 
toBinaryString(int, int) - Static method in class meka.core.MLUtils
ToBinaryString - use to go through all 'L' binary combinations.
toBitString(Instance, int) - Static method in class meka.core.MLUtils
ToBitString - returns a String representation of x = [0,0,1,0,1,0,0,0], e.g., "000101000".
toBitString(int[]) - Static method in class meka.core.MLUtils
ToBitString - returns a String representation of i[].
toBitString(double[]) - Static method in class meka.core.MLUtils
ToBitString - returns a String representation of d[].
toDebugString(Instances) - Static method in class meka.core.MLUtils
 
toDebugString(Instance) - Static method in class meka.core.MLUtils
 
toDoubleArray(int[]) - Static method in class meka.core.A
ToDoubleArray - cast int[] to double[].
toDoubleArray(int, int) - Static method in class meka.core.A
Convert integer to binary string (double representation) of L digits.
toDoubleArray(Instance, int) - Static method in class meka.core.MLUtils
Instance with L labels to double[] of length L.
toDoubleArray(Instance) - Static method in class meka.core.MLUtils
Instance with L labels to double[] of length L, where L = x.classIndex().
toDoubleArray(String) - Static method in class meka.core.MLUtils
To Double Arary - Convert something like "[1.0,2.0]" to [1.0,2.0]
toDoubleArray(String[]) - Static method in class meka.core.MLUtils
To Double Arary - Convert something like ["1.0","2.0"] to [1.0,2.0]
toIndicesSet(double[], double) - Static method in class meka.core.MLUtils
To Indices Set - return the indices in x[], whose values are greater than t, e.g., [0.3,0.0,0.5,0.8],0.4 to {2,3}.
toIndicesSet(int[]) - Static method in class meka.core.MLUtils
To Indices Set - return the indices in x[], whose values are greater than 0, e.g., [0,0,1,1] to {2,3}.
toIndicesSet(Instance, int) - Static method in class meka.core.MLUtils
To Indices Set - return the indices in x, whose values are greater than 1.
toIntArray(String) - Static method in class meka.core.A
Convert eg "12" to [1,2]
toIntArray(String[]) - Static method in class meka.core.A
Convert eg ["1","2"] to [1,2]
toIntArray(double[]) - Static method in class meka.core.A
 
toIntArray(double[], double) - Static method in class meka.core.A
 
toIntArray(String) - Static method in class meka.core.MLUtils
ToIntArray - Return an int[] from a String, e.g., "[0,1,2,0]" to [0,1,2,3].
toIntArray(String[]) - Static method in class meka.core.MLUtils
ToIntArray - Return an int[] from a String[], e.g., ["0","1","2","3"] to [0,1,2,3].
toIntArray(Instance, int) - Static method in class meka.core.MLUtils
ToIntArray - raw instance to int[] representation
toIntArray(double[], double) - Static method in class meka.core.MLUtils
Deprecated.
toPrimitive(Integer[]) - Static method in class meka.core.A
ToPrimitive - cast Integer[] to int[].
toPrimitive(List<Integer>) - Static method in class meka.core.A
ToPrimitive - cast List<Integer> to int[].
toPrimitive(Integer[]) - Static method in class meka.core.MLUtils
 
toSparseIntArray(Instance, int) - Static method in class meka.core.MLUtils
To Sparse Int Array - A sparse String representation, e.g., [1,34,73].
toString() - Method in class meka.classifiers.multilabel.cc.Trellis
 
toString() - Method in class meka.classifiers.multilabel.CT
 
toString() - Method in class meka.classifiers.multilabel.LC
 
toString() - Method in class meka.classifiers.multilabel.meta.DeepML
 
toString() - Method in class meka.classifiers.multilabel.MultilabelClassifier
 
toString() - Method in class meka.classifiers.multilabel.NN.AbstractNeuralNet
 
toString() - Method in class meka.classifiers.multilabel.RAkEL
 
toString(double[]) - Static method in class meka.core.A
ToString - Return a double[] as a nice String.
toString(double[], int) - Static method in class meka.core.A
ToString - Return a double[] as a nice String (formated to a 'adp' digits after the decimal point).
toString(int[]) - Static method in class meka.core.A
ToString - Return an int[] as a nice String.
toString() - Method in class meka.core.LabelSet
 
toString() - Method in class meka.core.LabelVector
 
toString(double[][], int) - Static method in class meka.core.M
ToString - return a String representation (to adp decimal places).
toString(double[][]) - Static method in class meka.core.M
ToString - return a String representation.
toString(int[][]) - Static method in class meka.core.M
ToString - return a String representation.
toString(double[][], String) - Static method in class meka.core.M
ToString - return a String representation of 'M', in Matlab format, called 'name'.
toString(Properties, String) - Static method in class meka.core.PropsUtils
Outputs the properties as they would be written to a file.
toString() - Method in class meka.core.Result
 
toString() - Method in class meka.core.SuperLabel
 
toString(int[][]) - Static method in class meka.core.SuperLabelUtils
ToString - A string representation for the super-class partition 'partition'.
toString() - Method in class meka.gui.core.ResultHistory
Returns the history.
toSubIndicesSet(Instance, int[]) - Static method in class meka.core.MLUtils
To Sub Indices Set - return the indices out of 'sub_indices', in x, whose values are greater than 1.
train(double[][], double[][]) - Method in class meka.classifiers.multilabel.BPNN
 
train(double[][], double[][], int) - Method in class meka.classifiers.multilabel.BPNN
Train - Train for I iterations.
trainClassifier(Classifier, Instances, int[][]) - Method in class meka.classifiers.multitarget.SCC
Train classifier h, on dataset D, under super-class partition 'partition'.
transform(Instances) - Method in class meka.classifiers.multilabel.cc.CNode
Transform - transform dataset D for this node.
transform(Instance, double[]) - Method in class meka.classifiers.multilabel.cc.CNode
Transform - turn [y1,y2,y3,x1,x2] into [y1,y2,x1,x2].
transform(Instances, int, int[]) - Static method in class meka.classifiers.multilabel.cc.CNode
Transform.
transformInstance(Instance) - Method in class meka.classifiers.multilabel.CC
TransformInstances - this function is DEPRECATED.
Trellis - Class in meka.classifiers.multilabel.cc
CTrellis.
Trellis(int[], int, int) - Constructor for class meka.classifiers.multilabel.cc.Trellis
 
Trellis(int[], int[][], int, int) - Constructor for class meka.classifiers.multilabel.cc.Trellis
 
trellis - Variable in class meka.classifiers.multilabel.cc.Trellis
 
TYPE - Variable in class meka.classifiers.multilabel.cc.Trellis
 
TYPE_CROSSVALIDATION - Static variable in class meka.gui.explorer.ClassifyTab
cross-validation.
TYPE_INCREMENTAL - Static variable in class meka.gui.explorer.ClassifyTab
incremental batch train/test split.
TYPE_TRAINTESTSPLIT - Static variable in class meka.gui.explorer.ClassifyTab
train/test split.

U

undo() - Method in class meka.gui.explorer.Explorer
Undos the last operation.
update(double[][], double[][]) - Method in class meka.classifiers.multilabel.BPNN
Update - A single training epoch.
updateClassifier(Instance) - Method in class meka.classifiers.multilabel.incremental.BRUpdateable
 
updateClassifier(Instance) - Method in class meka.classifiers.multilabel.incremental.CCUpdateable
 
updateClassifier(Instance) - Method in class meka.classifiers.multilabel.incremental.MajorityLabelsetUpdateable
 
updateClassifier(Instance) - Method in class meka.classifiers.multilabel.incremental.meta.BaggingMLUpdateable
 
updateClassifier(Instance) - Method in class meka.classifiers.multilabel.incremental.PSUpdateable
 
updateClassifier(Instance) - Method in class meka.classifiers.multilabel.incremental.RTUpdateable
 
updateTransform(Instance, double[]) - Method in class meka.classifiers.multilabel.cc.CNode
 

V

vals - Variable in class meka.core.Result
 
values - Variable in class meka.core.LabelVector
 
values - Variable in class meka.core.SuperLabel
 
VisualizeTab - Class in meka.gui.explorer
For visualizing the data.
VisualizeTab(Explorer) - Constructor for class meka.gui.explorer.VisualizeTab
Initializes the tab.

W

W - Variable in class meka.classifiers.multilabel.BPNN
Weight Matrix
weight(Instances) - Method in class meka.classifiers.multilabel.cc.Trellis
 
weight(int[], int, int, double[][]) - Method in class meka.classifiers.multilabel.cc.Trellis
What would the 'score' be, putting j_ at position j, in indices, with I matrix.
weightNeighbourhood(int) - Method in class meka.classifiers.multilabel.cc.Trellis
 
WIDTH - Variable in class meka.classifiers.multilabel.cc.Trellis
 
write(String, MekaExperiment) - Static method in class meka.experiment.MekaExperiment
Writes the experiment to disk.
writeResultToFile(Result, String) - Static method in class meka.core.Result
WriteResultToFile -- write a Result 'result' out in plain text format to file 'fname'.
A B C D E F G H I J K L M N O P R S T U V W 
MEKA 1.7.6