public class MekaRandomSplitResultProducer extends weka.experiment.RandomSplitResultProducer implements MekaResultProducer
Valid options are:
-P <percent> The percentage of instances to use for training. (default 66)
-D Save raw split evaluator output.
-O <file/directory name/path> The filename where raw output will be stored. If a directory name is specified then then individual outputs will be gzipped, otherwise all output will be zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)
-W <class name> The full class name of a SplitEvaluator. eg: weka.experiment.ClassifierSplitEvaluator
-R Set when data is not to be randomized and the data sets' size. Is not to be determined via probabilistic rounding.
Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator:
-W <class name> The full class name of the classifier. eg: weka.classifiers.bayes.NaiveBayes
-C <index> The index of the class for which IR statistics are to be output. (default 1)
-I <index> The index of an attribute to output in the results. This attribute should identify an instance in order to know which instances are in the test set of a cross validation. if 0 no output (default 0).
-P Add target and prediction columns to the result for each fold.
Options specific to classifier weka.classifiers.rules.ZeroR:
-D If set, classifier is run in debug mode and may output additional info to the consoleAll options after -- will be passed to the split evaluator.
Constructor and Description |
---|
MekaRandomSplitResultProducer() |
Modifier and Type | Method and Description |
---|---|
void |
doRun(int run)
Gets the results for a specified run number.
|
java.lang.String |
getRevision()
Returns the revision string.
|
int |
getTotalNumClasses()
Returns the overal number of classes.
|
void |
setTotalNumClasses(int value)
Sets the overal number of classes.
|
doRunKeys, enumerateMeasures, getCompatibilityState, getKeyNames, getKeyTypes, getMeasure, getOptions, getOutputFile, getRandomizeData, getRawOutput, getResultNames, getResultTypes, getSplitEvaluator, getTimestamp, getTrainPercent, globalInfo, listOptions, outputFileTipText, postProcess, preProcess, randomizeDataTipText, rawOutputTipText, setAdditionalMeasures, setInstances, setOptions, setOutputFile, setRandomizeData, setRawOutput, setResultListener, setSplitEvaluator, setTrainPercent, splitEvaluatorTipText, toString, trainPercentTipText
public void setTotalNumClasses(int value)
setTotalNumClasses
in interface MekaResultProducer
value
- the number of classespublic int getTotalNumClasses()
getTotalNumClasses
in interface MekaResultProducer
public void doRun(int run) throws java.lang.Exception
doRun
in interface weka.experiment.ResultProducer
doRun
in class weka.experiment.RandomSplitResultProducer
run
- the run number to get results for.java.lang.Exception
- if a problem occurs while getting the resultspublic java.lang.String getRevision()
getRevision
in interface weka.core.RevisionHandler
getRevision
in class weka.experiment.RandomSplitResultProducer