public class Evaluation extends Object
| Constructor and Description |
|---|
Evaluation() |
| Modifier and Type | Method and Description |
|---|---|
static Result |
cvModel(MultiLabelClassifier h,
weka.core.Instances D,
int numFolds,
String top)
CVModel - Split D into train/test folds, and then train and evaluate on each one.
|
static Result |
cvModel(MultiLabelClassifier h,
weka.core.Instances D,
int numFolds,
String top,
String vop)
CVModel - Split D into train/test folds, and then train and evaluate on each one.
|
static Result |
evaluateModel(MultiLabelClassifier h,
weka.core.Instances D_train,
weka.core.Instances D_test)
EvaluateModel - Build model 'h' on 'D_train', test it on 'D_test'.
|
static Result |
evaluateModel(MultiLabelClassifier h,
weka.core.Instances D_train,
weka.core.Instances D_test,
String top)
EvaluateModel - Build model 'h' on 'D_train', test it on 'D_test', threshold it according to 'top', using default verbosity option.
|
static Result |
evaluateModel(MultiLabelClassifier h,
weka.core.Instances D_train,
weka.core.Instances D_test,
String top,
String vop)
EvaluateModel - Build model 'h' on 'D_train', test it on 'D_test', threshold it according to 'top', verbosity 'vop'.
|
static Result |
evaluateModel(MultiLabelClassifier h,
weka.core.Instances D_test,
String tal,
String vop)
EvaluateModel - Assume 'h' is already built, test it on 'D_test', threshold it according to 'top', verbosity 'vop'.
|
static Result |
evaluateModelM(MultiLabelClassifier h,
weka.core.Instances D_train,
weka.core.Instances D_test,
String top,
String vop) |
static boolean |
isMT(weka.core.Instances D)
IsMT - see if dataset D is multi-target (else only multi-label)
|
static weka.core.Instances |
loadDataset(String[] options)
loadDataset - load a dataset, given command line option '-t' specifying an arff file.
|
static weka.core.Instances |
loadDataset(String[] options,
char T)
loadDataset - load a dataset, given command line options specifying an arff file.
|
static void |
printOptions(Enumeration e) |
static void |
runExperiment(MultiLabelClassifier h,
String[] options)
RunExperiment - Build and evaluate a model with command-line options.
|
static Result |
testClassifier(MultiLabelClassifier h,
weka.core.Instances D_test)
TestClassifier - test classifier h on D_test
|
static Result |
testClassifierM(MultiLabelClassifier h,
weka.core.Instances D_test)
Test Classifier but threaded (Multiple)
|
public static void runExperiment(MultiLabelClassifier h, String[] options) throws Exception
h - multi-label classifieroptions - command line optionsExceptionpublic static boolean isMT(weka.core.Instances D)
D - datapublic static Result evaluateModel(MultiLabelClassifier h, weka.core.Instances D_train, weka.core.Instances D_test, String top) throws Exception
h - a multi-dim. classifierD_train - training dataD_test - test datatop - Threshold OPtion (pertains to multi-label data only)Exceptionpublic static Result evaluateModel(MultiLabelClassifier h, weka.core.Instances D_train, weka.core.Instances D_test, String top, String vop) throws Exception
h - a multi-dim. classifierD_train - training dataD_test - test datatop - Threshold OPtion (pertains to multi-label data only)vop - Verbosity OPtion (which measures do we want to calculate/output)Exceptionpublic static Result evaluateModel(MultiLabelClassifier h, weka.core.Instances D_test, String tal, String vop) throws Exception
h - a multi-dim. classifierD_test - test datatal - Threshold VALUES (not option)vop - Verbosity OPtion (which measures do we want to calculate/output)Exceptionpublic static Result cvModel(MultiLabelClassifier h, weka.core.Instances D, int numFolds, String top) throws Exception
h - a multi-output classifierD - test data InstancesnumFolds - number of folds of CVtop - Threshold OPtion (pertains to multi-label data only)Exceptionpublic static Result cvModel(MultiLabelClassifier h, weka.core.Instances D, int numFolds, String top, String vop) throws Exception
h - a multi-output classifierD - test data InstancesnumFolds - number of folds of CVtop - Threshold OPtion (pertains to multi-label data only)vop - Verbosity OPtion (which measures do we want to calculate/output)Exceptionpublic static Result evaluateModel(MultiLabelClassifier h, weka.core.Instances D_train, weka.core.Instances D_test) throws Exception
h - a multi-dim. classifierD_train - training dataD_test - test dataExceptionpublic static Result evaluateModelM(MultiLabelClassifier h, weka.core.Instances D_train, weka.core.Instances D_test, String top, String vop) throws Exception
Exceptionpublic static Result testClassifier(MultiLabelClassifier h, weka.core.Instances D_test) throws Exception
h - a multi-dim. classifier, ALREADY BUILTD_test - test dataExceptionpublic static Result testClassifierM(MultiLabelClassifier h, weka.core.Instances D_test) throws Exception
h - a multi-dim. classifier, ALREADY BUILT (threaded, implements MultiLabelThreaded)D_test - test dataExceptionpublic static weka.core.Instances loadDataset(String[] options) throws Exception
options - command line options, specifying dataset filenameExceptionpublic static weka.core.Instances loadDataset(String[] options, char T) throws Exception
options - command line options, specifying dataset filenameT - set to 'T' if we want to load a test file (default 't': load train or train-test file)Exceptionpublic static void printOptions(Enumeration e)
Copyright © 2017. All Rights Reserved.