Interface | Description |
---|---|
IncrementalMultiLabelClassifier |
Interface for incremental multi-label classifiers.
|
MultiLabelClassifier |
Interface for multi-label classifiers.
|
MultiLabelClassifierThreaded |
Interface for multi-label classifiers.
|
MultiTargetCapable |
MultiTargetCapable.java - A multi-label Classifier that can also handle generic multi-target data.
|
SemisupervisedClassifier |
SemisupervisedClassifier.java - An Interface for Multilabel Semisupervised Classifiers.
|
Class | Description |
---|---|
AbstractMultiLabelClassifier |
A Multilabel Classifier.
|
BCC |
BCC.java - Bayesian Classifier Chains.
|
BPNN |
BPNN.java - Back Propagation Neural Network.
|
BR | |
BRq |
BRq.java - Random Subspace ('quick') Version.
|
CC |
CC.java - The Classifier Chains Method.
|
CCq |
The Classifier Chains Method - Random Subspace ('quick') Version.
|
CDN |
CDN.java - Conditional Dependency Networks.
|
CDT |
CDT.java - Conditional Dependency Trellis.
|
CT |
CT - Classifier Trellis.
|
DBPNN |
DBPNN.java - Deep Back-Propagation Neural Network.
|
Evaluation |
Evaluation.java - Evaluation functionality.
|
FW |
FW.java Four-class pairWise classification.
|
HASEL |
HASEL - Partitions labels into subsets based on the dataset defined hierarchy.
|
LabelTransformationClassifier |
Abstract label transformation classifiers, all classes that transform the labels
should inherit from this classifier.
|
LC |
LC.java - The LC (Label Combination) aka LP (Laber Powerset) Method.
|
MajorityLabelset |
MajorityLabelset.java - The most simplest multi-label classifier.
|
Maniac |
Maniac - Multi-lAbel classificatioN using AutoenCoders.
|
MCC |
MCC.java - CC with Monte Carlo optimisation.
|
MLCBMaD |
MLC-BMaD - Multi-Label Classification using Boolean Matrix Decomposition.
|
MULAN |
MULAN.java - A wrapper for MULAN classifiers MULAN.
|
PCC |
PCC.java - (Bayes Optimal) Probabalistic Classifier Chains.
|
PLST |
PLST - Principal Label Space Transformation.
|
PMCC |
PMCC.java - Like MCC but creates a population of M chains at training time (from Is candidate chains, using Monte Carlo sampling), and uses this population for inference at test time; If you are looking for a 'more typical' majority-vote ensemble method, use something like EnsembleML or BaggingML with MCC.
|
ProblemTransformationMethod |
MultilabelClassifier.java - A Multilabel Classifier.
|
PS |
PS.java - The Pruned Sets Method.
|
PSt |
PSt.java - Pruned Sets with a a threshold so as to be able to predict sets not seen in the training set.
|
RAkEL |
RAkEL.java - Draws M subsets of size k from the set of labels, and trains PS upon each one, then combines label votes from these PS classifiers to get a label-vector prediction.
|
RAkELd |
RAkELd - Takes RAndom partition of labELs; like RAkEL but labelsets are disjoint / non-overlapping subsets.
|
RT |
RT.java - The 'Ranking + Threshold' classifier.
|
Copyright © 2017. All Rights Reserved.