public class Maniac extends LabelTransformationClassifier implements weka.core.TechnicalInformationHandler
| Modifier and Type | Field and Description |
|---|---|
protected double |
compression
The compression factor, i.e.
|
protected int |
numberAutoencoders
Number of autoencoders to train, i.e.
|
protected boolean |
optimizeAE
Flag to tell if the number of autoencoders should be optimized.
|
protected static long |
serialVersionUID |
| Constructor and Description |
|---|
Maniac() |
| Modifier and Type | Method and Description |
|---|---|
String |
compressionTipText()
Gives the tiptext for compression.
|
String |
compressionToolTip()
Gives the tooltip for compression.
|
double |
getCompression()
Get the
Compression value. |
protected weka.classifiers.Classifier |
getDefaultClassifier()
Change default classifier to CR with Linear Regression as base as this classifier
uses numeric values in the compressed labels.
|
protected double |
getDefaultCompression()
Returns the default compression, 0.85 seems to be a good value for most settings.
|
protected int |
getDefaultNumberAutoencoders()
Returns the default number of autoencoders, set to 4, which seems to
be good choice for most problems.
|
protected boolean |
getDefaultOptimizeAE()
Tge default setting for optimizing the autoencoders.
|
String |
getModel()
Returns a string representation of the model.
|
int |
getNumberAutoencoders()
Get the
numberAutoencoders value. |
String[] |
getOptions()
Returns an array with the options of the classifier.
|
weka.core.TechnicalInformation |
getTechnicalInformation() |
String |
globalInfo()
Returns the global information of the classifier.
|
boolean |
isOptimizeAE()
Get the
OptimizeAE value. |
Enumeration |
listOptions()
Returns an enumeration of the options.
|
static void |
main(String[] args)
Main method for testing.
|
String |
numberAutoencodersTipText()
Gives the tiptext for numberAutoencoders.
|
String |
numberAutoencodersToolTip()
Gives the tooltip for numberAutoencoders.
|
String |
optimizeAETipText()
Gives the tiptext for optimizeAE.
|
String |
optimizeAEToolTip()
Gives the tooltip for OptimizeAE.
|
protected void |
setAE(org.kramerlab.autoencoder.neuralnet.autoencoder.Autoencoder ae)
Sets the autoencoder (for using a trained one, e.g.
|
void |
setCompression(double compression)
Set the
Compression value. |
void |
setNumberAutoencoders(int numberAutoencoders)
Set the
numberAutoencoders value. |
void |
setOptimizeAE(boolean optimizeAE)
Set the
OptimizeAE value. |
void |
setOptions(String[] options)
Sets the options to the given values in the array.
|
String |
toString() |
weka.core.Instance |
transformInstance(weka.core.Instance x)
Transforms the instance in the prediction process before given to the internal multi-label
or multi-target classifier.
|
weka.core.Instances |
transformLabels(weka.core.Instances D)
The method to transform the labels into another set of latent labels,
typically a compression method is used, e.g., Boolean matrix decomposition
in the case of MLC-BMaD, or matrix multiplication based on SVD for PLST.
|
double[] |
transformPredictionsBack(double[] y)
Transforms the predictions of the internal classifier back to the original labels.
|
buildClassifier, defaultClassifierString, distributionForInstance, extractPart, getRevision, setClassifier, testCapabilitiesclassifierTipText, defaultClassifierOptions, getCapabilities, getClassifier, getClassifierSpec, postExecution, preExecutionbatchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacesclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitdebugTipText, getDebug, setDebugprotected static final long serialVersionUID
protected boolean optimizeAE
protected double compression
protected int numberAutoencoders
protected void setAE(org.kramerlab.autoencoder.neuralnet.autoencoder.Autoencoder ae)
ae - The autoencoderprotected int getDefaultNumberAutoencoders()
public final int getNumberAutoencoders()
numberAutoencoders value.in valuepublic final void setNumberAutoencoders(int numberAutoencoders)
numberAutoencoders value.numberAutoencoders - The new NumberAutoencoders value.public String numberAutoencodersToolTip()
public String numberAutoencodersTipText()
public final double getCompression()
Compression value.double valuepublic final void setCompression(double compression)
Compression value.compression - The new Compression value.protected double getDefaultCompression()
public String compressionToolTip()
public String compressionTipText()
public String optimizeAETipText()
public final boolean isOptimizeAE()
OptimizeAE value.boolean valuepublic final void setOptimizeAE(boolean optimizeAE)
OptimizeAE value.optimizeAE - The new OptimizeAE value.protected boolean getDefaultOptimizeAE()
public String optimizeAEToolTip()
public String globalInfo()
public Enumeration listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.SingleClassifierEnhancerprotected weka.classifiers.Classifier getDefaultClassifier()
getDefaultClassifier in class LabelTransformationClassifierpublic String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.SingleClassifierEnhancerpublic void setOptions(String[] options) throws Exception
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.SingleClassifierEnhanceroptions - The options to be set.Exceptionpublic weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic weka.core.Instance transformInstance(weka.core.Instance x)
throws Exception
LabelTransformationClassifiertransformInstance in class LabelTransformationClassifierx - The instance to transform. Consists of features and labels.Exceptionpublic weka.core.Instances transformLabels(weka.core.Instances D)
throws Exception
LabelTransformationClassifiertransformLabels in class LabelTransformationClassifierD - the instances to transform into new instances with transformed labels. The
Instances consist of features and original labels.Exceptionpublic double[] transformPredictionsBack(double[] y)
LabelTransformationClassifiertransformPredictionsBack in class LabelTransformationClassifiery - The predictions that should be transformed back. The array consists only of
the predictions as they are returned from the internal classifier.public String getModel()
MultiLabelClassifiergetModel in interface MultiLabelClassifierCopyright © 2017. All Rights Reserved.