public class Maniac extends LabelTransformationClassifier implements weka.core.TechnicalInformationHandler
Modifier and Type | Field and Description |
---|---|
protected double |
compression
The compression factor, i.e.
|
protected int |
numberAutoencoders
Number of autoencoders to train, i.e.
|
protected boolean |
optimizeAE
Flag to tell if the number of autoencoders should be optimized.
|
protected static long |
serialVersionUID |
Constructor and Description |
---|
Maniac() |
Modifier and Type | Method and Description |
---|---|
String |
compressionTipText()
Gives the tiptext for compression.
|
String |
compressionToolTip()
Gives the tooltip for compression.
|
double |
getCompression()
Get the
Compression value. |
protected weka.classifiers.Classifier |
getDefaultClassifier()
Change default classifier to CR with Linear Regression as base as this classifier
uses numeric values in the compressed labels.
|
protected double |
getDefaultCompression()
Returns the default compression, 0.85 seems to be a good value for most settings.
|
protected int |
getDefaultNumberAutoencoders()
Returns the default number of autoencoders, set to 4, which seems to
be good choice for most problems.
|
protected boolean |
getDefaultOptimizeAE()
Tge default setting for optimizing the autoencoders.
|
String |
getModel()
Returns a string representation of the model.
|
int |
getNumberAutoencoders()
Get the
numberAutoencoders value. |
String[] |
getOptions()
Returns an array with the options of the classifier.
|
weka.core.TechnicalInformation |
getTechnicalInformation() |
String |
globalInfo()
Returns the global information of the classifier.
|
boolean |
isOptimizeAE()
Get the
OptimizeAE value. |
Enumeration |
listOptions()
Returns an enumeration of the options.
|
static void |
main(String[] args)
Main method for testing.
|
String |
numberAutoencodersTipText()
Gives the tiptext for numberAutoencoders.
|
String |
numberAutoencodersToolTip()
Gives the tooltip for numberAutoencoders.
|
String |
optimizeAETipText()
Gives the tiptext for optimizeAE.
|
String |
optimizeAEToolTip()
Gives the tooltip for OptimizeAE.
|
protected void |
setAE(org.kramerlab.autoencoder.neuralnet.autoencoder.Autoencoder ae)
Sets the autoencoder (for using a trained one, e.g.
|
void |
setCompression(double compression)
Set the
Compression value. |
void |
setNumberAutoencoders(int numberAutoencoders)
Set the
numberAutoencoders value. |
void |
setOptimizeAE(boolean optimizeAE)
Set the
OptimizeAE value. |
void |
setOptions(String[] options)
Sets the options to the given values in the array.
|
String |
toString() |
weka.core.Instance |
transformInstance(weka.core.Instance x)
Transforms the instance in the prediction process before given to the internal multi-label
or multi-target classifier.
|
weka.core.Instances |
transformLabels(weka.core.Instances D)
The method to transform the labels into another set of latent labels,
typically a compression method is used, e.g., Boolean matrix decomposition
in the case of MLC-BMaD, or matrix multiplication based on SVD for PLST.
|
double[] |
transformPredictionsBack(double[] y)
Transforms the predictions of the internal classifier back to the original labels.
|
buildClassifier, defaultClassifierString, distributionForInstance, extractPart, getRevision, setClassifier, testCapabilities
classifierTipText, defaultClassifierOptions, getCapabilities, getClassifier, getClassifierSpec, postExecution, preExecution
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
debugTipText, getDebug, setDebug
protected static final long serialVersionUID
protected boolean optimizeAE
protected double compression
protected int numberAutoencoders
protected void setAE(org.kramerlab.autoencoder.neuralnet.autoencoder.Autoencoder ae)
ae
- The autoencoderprotected int getDefaultNumberAutoencoders()
public final int getNumberAutoencoders()
numberAutoencoders
value.in
valuepublic final void setNumberAutoencoders(int numberAutoencoders)
numberAutoencoders
value.numberAutoencoders
- The new NumberAutoencoders value.public String numberAutoencodersToolTip()
public String numberAutoencodersTipText()
public final double getCompression()
Compression
value.double
valuepublic final void setCompression(double compression)
Compression
value.compression
- The new Compression value.protected double getDefaultCompression()
public String compressionToolTip()
public String compressionTipText()
public String optimizeAETipText()
public final boolean isOptimizeAE()
OptimizeAE
value.boolean
valuepublic final void setOptimizeAE(boolean optimizeAE)
OptimizeAE
value.optimizeAE
- The new OptimizeAE value.protected boolean getDefaultOptimizeAE()
public String optimizeAEToolTip()
public String globalInfo()
public Enumeration listOptions()
listOptions
in interface weka.core.OptionHandler
listOptions
in class weka.classifiers.SingleClassifierEnhancer
protected weka.classifiers.Classifier getDefaultClassifier()
getDefaultClassifier
in class LabelTransformationClassifier
public String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class weka.classifiers.SingleClassifierEnhancer
public void setOptions(String[] options) throws Exception
setOptions
in interface weka.core.OptionHandler
setOptions
in class weka.classifiers.SingleClassifierEnhancer
options
- The options to be set.Exception
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface weka.core.TechnicalInformationHandler
public weka.core.Instance transformInstance(weka.core.Instance x) throws Exception
LabelTransformationClassifier
transformInstance
in class LabelTransformationClassifier
x
- The instance to transform. Consists of features and labels.Exception
public weka.core.Instances transformLabels(weka.core.Instances D) throws Exception
LabelTransformationClassifier
transformLabels
in class LabelTransformationClassifier
D
- the instances to transform into new instances with transformed labels. The
Instances consist of features and original labels.Exception
public double[] transformPredictionsBack(double[] y)
LabelTransformationClassifier
transformPredictionsBack
in class LabelTransformationClassifier
y
- The predictions that should be transformed back. The array consists only of
the predictions as they are returned from the internal classifier.public String getModel()
MultiLabelClassifier
getModel
in interface MultiLabelClassifier
Copyright © 2017. All Rights Reserved.