public class PLST extends LabelTransformationClassifier implements weka.core.TechnicalInformationHandler
| Modifier and Type | Field and Description |
|---|---|
protected weka.core.Instances |
m_PatternInstances |
protected weka.core.matrix.Matrix |
m_Shift |
protected int |
m_Size |
protected weka.core.matrix.Matrix |
m_v |
| Constructor and Description |
|---|
PLST() |
| Modifier and Type | Method and Description |
|---|---|
protected weka.classifiers.Classifier |
getDefaultClassifier()
Change default classifier to CR with Linear Regression as base as this classifier
uses numeric values in the compressed labels.
|
protected int |
getDefaultSize()
The default size, set to 5.
|
String |
getModel()
Returns a string representation of the model.
|
String[] |
getOptions()
Returns an array with the options of the classifier.
|
int |
getSize()
Returns the size of the compressed labels.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
String |
globalInfo()
Returns the global information of the classifier.
|
Enumeration |
listOptions()
Returns an enumeration of the options.
|
static void |
main(String[] args)
Main method for testing.
|
void |
setOptions(String[] options)
Sets the options to the given values in the array.
|
void |
setSize(int size)
Sets the size of the compressed labels.
|
String |
sizeTipText()
The tooltip for the size.
|
String |
toString() |
weka.core.Instance |
transformInstance(weka.core.Instance x)
Transforms the instance in the prediction process before given to the internal multi-label
or multi-target classifier.
|
weka.core.Instances |
transformLabels(weka.core.Instances D)
The method to transform the labels into another set of latent labels,
typically a compression method is used, e.g., Boolean matrix decomposition
in the case of MLC-BMaD, or matrix multiplication based on SVD for PLST.
|
double[] |
transformPredictionsBack(double[] y)
Transforms the predictions of the internal classifier back to the original labels.
|
buildClassifier, defaultClassifierString, distributionForInstance, extractPart, getRevision, setClassifier, testCapabilitiesclassifierTipText, defaultClassifierOptions, getCapabilities, getClassifier, getClassifierSpec, postExecution, preExecutionbatchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacesclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitdebugTipText, getDebug, setDebugprotected weka.core.matrix.Matrix m_Shift
protected weka.core.Instances m_PatternInstances
protected weka.core.matrix.Matrix m_v
protected int m_Size
public String globalInfo()
protected weka.classifiers.Classifier getDefaultClassifier()
getDefaultClassifier in class LabelTransformationClassifierprotected int getDefaultSize()
public int getSize()
public void setSize(int size)
size - The size of the compressed labels, i.e., the number of columns.public String sizeTipText()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic Enumeration listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.SingleClassifierEnhancerpublic String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.SingleClassifierEnhancerpublic void setOptions(String[] options) throws Exception
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.SingleClassifierEnhanceroptions - The options to be set.Exceptionpublic weka.core.Instances transformLabels(weka.core.Instances D)
throws Exception
transformLabels in class LabelTransformationClassifierD - the instances to transform into new instances with transformed labels. The
Instances consist of features and original labels.Exceptionpublic double[] transformPredictionsBack(double[] y)
transformPredictionsBack in class LabelTransformationClassifiery - The predictions that should be transformed back. The array consists only of
the predictions as they are returned from the internal classifier.public weka.core.Instance transformInstance(weka.core.Instance x)
throws Exception
transformInstance in class LabelTransformationClassifierx - The instance to transform. Consists of features and labels.Exceptionpublic String getModel()
getModel in interface MultiLabelClassifierCopyright © 2017. All Rights Reserved.