public class PLST extends LabelTransformationClassifier implements weka.core.TechnicalInformationHandler
Modifier and Type | Field and Description |
---|---|
protected weka.core.Instances |
m_PatternInstances |
protected weka.core.matrix.Matrix |
m_Shift |
protected int |
m_Size |
protected weka.core.matrix.Matrix |
m_v |
Constructor and Description |
---|
PLST() |
Modifier and Type | Method and Description |
---|---|
protected weka.classifiers.Classifier |
getDefaultClassifier()
Change default classifier to CR with Linear Regression as base as this classifier
uses numeric values in the compressed labels.
|
protected int |
getDefaultSize()
The default size, set to 5.
|
String |
getModel()
Returns a string representation of the model.
|
String[] |
getOptions()
Returns an array with the options of the classifier.
|
int |
getSize()
Returns the size of the compressed labels.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
String |
globalInfo()
Returns the global information of the classifier.
|
Enumeration |
listOptions()
Returns an enumeration of the options.
|
static void |
main(String[] args)
Main method for testing.
|
void |
setOptions(String[] options)
Sets the options to the given values in the array.
|
void |
setSize(int size)
Sets the size of the compressed labels.
|
String |
sizeTipText()
The tooltip for the size.
|
String |
toString() |
weka.core.Instance |
transformInstance(weka.core.Instance x)
Transforms the instance in the prediction process before given to the internal multi-label
or multi-target classifier.
|
weka.core.Instances |
transformLabels(weka.core.Instances D)
The method to transform the labels into another set of latent labels,
typically a compression method is used, e.g., Boolean matrix decomposition
in the case of MLC-BMaD, or matrix multiplication based on SVD for PLST.
|
double[] |
transformPredictionsBack(double[] y)
Transforms the predictions of the internal classifier back to the original labels.
|
buildClassifier, defaultClassifierString, distributionForInstance, extractPart, getRevision, setClassifier, testCapabilities
classifierTipText, defaultClassifierOptions, getCapabilities, getClassifier, getClassifierSpec, postExecution, preExecution
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
debugTipText, getDebug, setDebug
protected weka.core.matrix.Matrix m_Shift
protected weka.core.Instances m_PatternInstances
protected weka.core.matrix.Matrix m_v
protected int m_Size
public String globalInfo()
protected weka.classifiers.Classifier getDefaultClassifier()
getDefaultClassifier
in class LabelTransformationClassifier
protected int getDefaultSize()
public int getSize()
public void setSize(int size)
size
- The size of the compressed labels, i.e., the number of columns.public String sizeTipText()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface weka.core.TechnicalInformationHandler
public Enumeration listOptions()
listOptions
in interface weka.core.OptionHandler
listOptions
in class weka.classifiers.SingleClassifierEnhancer
public String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class weka.classifiers.SingleClassifierEnhancer
public void setOptions(String[] options) throws Exception
setOptions
in interface weka.core.OptionHandler
setOptions
in class weka.classifiers.SingleClassifierEnhancer
options
- The options to be set.Exception
public weka.core.Instances transformLabels(weka.core.Instances D) throws Exception
transformLabels
in class LabelTransformationClassifier
D
- the instances to transform into new instances with transformed labels. The
Instances consist of features and original labels.Exception
public double[] transformPredictionsBack(double[] y)
transformPredictionsBack
in class LabelTransformationClassifier
y
- The predictions that should be transformed back. The array consists only of
the predictions as they are returned from the internal classifier.public weka.core.Instance transformInstance(weka.core.Instance x) throws Exception
transformInstance
in class LabelTransformationClassifier
x
- The instance to transform. Consists of features and labels.Exception
public String getModel()
getModel
in interface MultiLabelClassifier
Copyright © 2017. All Rights Reserved.