Package | Description |
---|---|
meka.classifiers.multilabel | |
meka.classifiers.multilabel.incremental | |
meka.classifiers.multitarget | |
meka.core |
Modifier and Type | Class and Description |
---|---|
class |
BCC
BCC.java - Bayesian Classifier Chains.
|
class |
CT
CT - Classifier Trellis.
|
class |
MCC
MCC.java - CC with Monte Carlo optimisation.
|
class |
PCC
PCC.java - (Bayes Optimal) Probabalistic Classifier Chains.
|
class |
PMCC
PMCC.java - Like MCC but creates a population of M chains at training time (from Is candidate chains, using Monte Carlo sampling), and uses this population for inference at test time; If you are looking for a 'more typical' majority-vote ensemble method, use something like EnsembleML or BaggingML with MCC.
|
Modifier and Type | Field and Description |
---|---|
protected CC[] |
PMCC.h |
Modifier and Type | Method and Description |
---|---|
protected CC |
PMCC.buildCC(int[] s,
weka.core.Instances D)
BuildCC - Build a CC of chain-order 's' on dataset 'D'.
|
protected static CC |
PMCC.getClosest(HashMap<String,CC> map,
String sequence)
GetClosest - returns the 'CC' in 'map' which is built on the sequence most matched to 'sequence'.
|
protected CC |
PMCC.rebuildCC(CC h_old,
int[] s_new,
weka.core.Instances D)
RebuildCC - rebuild a classifier chain 'h_old' to have a new sequence 's_new'.
|
Modifier and Type | Method and Description |
---|---|
double |
MCC.payoff(CC h,
weka.core.Instances D)
Payoff - Return a default score of h evaluated on D.
|
protected CC |
PMCC.rebuildCC(CC h_old,
int[] s_new,
weka.core.Instances D)
RebuildCC - rebuild a classifier chain 'h_old' to have a new sequence 's_new'.
|
Modifier and Type | Method and Description |
---|---|
protected static CC |
PMCC.getClosest(HashMap<String,CC> map,
String sequence)
GetClosest - returns the 'CC' in 'map' which is built on the sequence most matched to 'sequence'.
|
Modifier and Type | Class and Description |
---|---|
class |
CCUpdateable
CCUpdateable.java - Updateable version of CC.
|
Modifier and Type | Class and Description |
---|---|
class |
CC |
class |
CCp
CCp.java - Multitarget CC with probabilistic output.
|
Modifier and Type | Method and Description |
---|---|
static CC |
CCUtils.buildCC(int[] chain,
weka.core.Instances D,
weka.classifiers.Classifier g)
BuildCC - Given a base classifier 'g', build a new CC classifier on data D, given chain order 'chain'.
|
Copyright © 2017. All Rights Reserved.