public class Evaluation
extends java.lang.Object
Constructor and Description |
---|
Evaluation() |
Modifier and Type | Method and Description |
---|---|
static Result[] |
cvModel(MultilabelClassifier h,
weka.core.Instances D,
int numFolds,
java.lang.String top)
CVModel - Split D into train/test folds, and then train and evaluate on each one.
|
static Result[] |
cvModel(MultilabelClassifier h,
weka.core.Instances D,
int numFolds,
java.lang.String top,
java.lang.String vop)
CVModel - Split D into train/test folds, and then train and evaluate on each one.
|
static Result |
evaluateModel(MultilabelClassifier h,
weka.core.Instances D_train,
weka.core.Instances D_test)
EvaluateModel - Build model 'h' on 'D_train', test it on 'D_test'.
|
static Result |
evaluateModel(MultilabelClassifier h,
weka.core.Instances D_train,
weka.core.Instances D_test,
java.lang.String top)
EvaluateModel - Build model 'h' on 'D_train', test it on 'D_test', threshold it according to 'top', using default verbosity option.
|
static Result |
evaluateModel(MultilabelClassifier h,
weka.core.Instances D_train,
weka.core.Instances D_test,
java.lang.String top,
java.lang.String vop)
EvaluateModel - Build model 'h' on 'D_train', test it on 'D_test', threshold it according to 'top', verbosity 'vop'.
|
static Result |
evaluateModel(MultilabelClassifier h,
weka.core.Instances D_test,
java.lang.String tal,
java.lang.String vop)
EvaluateModel - Assume 'h' is already built, test it on 'D_test', threshold it according to 'top', verbosity 'vop'.
|
static boolean |
isMT(weka.core.Instances D)
IsMT - see if dataset D is multi-target (else only multi-label)
|
static weka.core.Instances |
loadDataset(java.lang.String[] options)
loadDataset - load a dataset, given command line option '-t' specifying an arff file.
|
static weka.core.Instances |
loadDataset(java.lang.String[] options,
char T)
loadDataset - load a dataset, given command line options specifying an arff file.
|
static void |
printOptions(java.util.Enumeration e) |
static void |
runExperiment(MultilabelClassifier h,
java.lang.String[] options)
RunExperiment - Build and evaluate a model with command-line options.
|
static Result |
testClassifier(MultilabelClassifier h,
weka.core.Instances D_test)
TestClassifier - test classifier h on D_test
|
public static void runExperiment(MultilabelClassifier h, java.lang.String[] options) throws java.lang.Exception
h
- multi-label classifieroptions
- command line optionsjava.lang.Exception
public static boolean isMT(weka.core.Instances D)
D
- datapublic static Result evaluateModel(MultilabelClassifier h, weka.core.Instances D_train, weka.core.Instances D_test, java.lang.String top) throws java.lang.Exception
h
- a multi-dim. classifierD_train
- training dataD_test
- test datatop
- Threshold OPtion (pertains to multi-label data only)java.lang.Exception
public static Result evaluateModel(MultilabelClassifier h, weka.core.Instances D_train, weka.core.Instances D_test, java.lang.String top, java.lang.String vop) throws java.lang.Exception
h
- a multi-dim. classifierD_train
- training dataD_test
- test datatop
- Threshold OPtion (pertains to multi-label data only)vop
- Verbosity OPtion (which measures do we want to calculate/output)java.lang.Exception
public static Result evaluateModel(MultilabelClassifier h, weka.core.Instances D_test, java.lang.String tal, java.lang.String vop) throws java.lang.Exception
h
- a multi-dim. classifierD_test
- test datatal
- Threshold VALUES (not option)vop
- Verbosity OPtion (which measures do we want to calculate/output)java.lang.Exception
public static Result[] cvModel(MultilabelClassifier h, weka.core.Instances D, int numFolds, java.lang.String top) throws java.lang.Exception
h
- a multi-dim. classifierD
- datanumFolds
- test datatop
- Threshold OPtion (pertains to multi-label data only)java.lang.Exception
public static Result[] cvModel(MultilabelClassifier h, weka.core.Instances D, int numFolds, java.lang.String top, java.lang.String vop) throws java.lang.Exception
h
- a multi-dim. classifierD
- datanumFolds
- test datatop
- Threshold OPtion (pertains to multi-label data only)vop
- Verbosity OPtion (which measures do we want to calculate/output)java.lang.Exception
public static Result evaluateModel(MultilabelClassifier h, weka.core.Instances D_train, weka.core.Instances D_test) throws java.lang.Exception
h
- a multi-dim. classifierD_train
- training dataD_test
- test datajava.lang.Exception
public static Result testClassifier(MultilabelClassifier h, weka.core.Instances D_test) throws java.lang.Exception
h
- a multi-dim. classifier, ALREADY BUILTD_test
- test datajava.lang.Exception
public static weka.core.Instances loadDataset(java.lang.String[] options) throws java.lang.Exception
options
- command line options, specifying dataset filenamejava.lang.Exception
public static weka.core.Instances loadDataset(java.lang.String[] options, char T) throws java.lang.Exception
options
- command line options, specifying dataset filenameT
- set to 'T' if we want to load a test file (default 't': load train or train-test file)java.lang.Exception
public static void printOptions(java.util.Enumeration e)