public class Result
extends java.lang.Object
implements java.io.Serializable
Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank. Classifier Chains for Multi-label Classification. Machine Learning Journal. Springer (2011).
Jesse Read, Scalable Multi-label Classification. PhD Thesis, University of Waikato, Hamilton, New Zealand (2010).
Modifier and Type | Field and Description |
---|---|
java.util.ArrayList<int[]> |
actuals |
java.util.HashMap<java.lang.String,java.lang.String> |
info |
int |
L |
java.util.HashMap<java.lang.String,java.lang.Double> |
output |
java.util.ArrayList<double[]> |
predictions |
java.util.HashMap<java.lang.String,java.lang.Double> |
vals |
Constructor and Description |
---|
Result() |
Result(int L) |
Result(int N,
int L) |
Modifier and Type | Method and Description |
---|---|
void |
addResult(double[] pred,
weka.core.Instance real)
AddResult - Add an entry.
|
void |
addValue(java.lang.String metric,
double v)
AddValue.
|
int[][] |
allActuals()
AllActuals - Retrive all true predictions in an L x N matrix.
|
double[][] |
allPredictions()
AllPredictions - Retrive all prediction confidences in an L * N matrix.
|
int[][] |
allPredictions(double t)
AllPredictions - Retrive all predictions (according to threshold t) in an L * N matrix.
|
java.lang.String |
getInfo(java.lang.String cat)
GetInfo.
|
static java.lang.String |
getResultAsString(Result s)
GetResultAsString - print out each prediction in a Result along with its true labelset.
|
static java.lang.String |
getResultAsString(Result s,
int adp)
GetResultAsString - print out each prediction in a Result (to a certain number of decimal points) along with its true labelset.
|
static java.util.HashMap<java.lang.String,java.lang.Double> |
getStats(Result r,
java.lang.String vop)
GetStats.
|
double |
getValue(java.lang.String metric)
AddValue.
|
int[] |
rowActual(int i)
RowActual - Retrive the true values for the i-th instance.
|
int[] |
rowPrediction(int i)
RowPrediction - Retrive the predicted values for the i-th instance according to pre-calibrated/chosen threshold.
|
int[] |
rowPrediction(int i,
double t)
RowPrediction - Retrive the predicted values for the i-th instance according to threshold t.
|
double[] |
rowRanking(int i)
RowRanking - Retrive the prediction confidences for the i-th instance.
|
void |
setInfo(java.lang.String cat,
java.lang.String val)
SetInfo.
|
void |
setValue(java.lang.String metric,
double v)
SetValue.
|
int |
size() |
java.lang.String |
toString() |
static void |
writeResultToFile(Result result,
java.lang.String fname)
WriteResultToFile -- write a Result 'result' out in plain text format to file 'fname'.
|
public int L
public java.util.ArrayList<double[]> predictions
public java.util.ArrayList<int[]> actuals
public java.util.HashMap<java.lang.String,java.lang.Double> output
public java.util.HashMap<java.lang.String,java.lang.String> info
public java.util.HashMap<java.lang.String,java.lang.Double> vals
public Result()
public Result(int L)
public Result(int N, int L)
public int size()
public java.lang.String toString()
toString
in class java.lang.Object
public void addResult(double[] pred, weka.core.Instance real)
public int[] rowActual(int i)
public double[] rowRanking(int i)
public int[] rowPrediction(int i, double t)
public int[] rowPrediction(int i)
public double[][] allPredictions()
public int[][] allPredictions(double t)
public int[][] allActuals()
public void addValue(java.lang.String metric, double v)
public void setValue(java.lang.String metric, double v)
public double getValue(java.lang.String metric)
public void setInfo(java.lang.String cat, java.lang.String val)
public java.lang.String getInfo(java.lang.String cat)
public static java.util.HashMap<java.lang.String,java.lang.Double> getStats(Result r, java.lang.String vop)
public static java.lang.String getResultAsString(Result s)
public static void writeResultToFile(Result result, java.lang.String fname) throws java.lang.Exception
result
- Resultfname
- file namejava.lang.Exception
public static java.lang.String getResultAsString(Result s, int adp)