Package | Description |
---|---|
meka.classifiers.multilabel | |
meka.classifiers.multilabel.incremental | |
meka.classifiers.multitarget | |
meka.core | |
meka.gui.core |
Modifier and Type | Method and Description |
---|---|
static Result[] |
Evaluation.cvModel(MultilabelClassifier h,
weka.core.Instances D,
int numFolds,
java.lang.String top)
CVModel - Split D into train/test folds, and then train and evaluate on each one.
|
static Result[] |
Evaluation.cvModel(MultilabelClassifier h,
weka.core.Instances D,
int numFolds,
java.lang.String top,
java.lang.String vop)
CVModel - Split D into train/test folds, and then train and evaluate on each one.
|
static Result |
Evaluation.evaluateModel(MultilabelClassifier h,
weka.core.Instances D_train,
weka.core.Instances D_test)
EvaluateModel - Build model 'h' on 'D_train', test it on 'D_test'.
|
static Result |
Evaluation.evaluateModel(MultilabelClassifier h,
weka.core.Instances D_train,
weka.core.Instances D_test,
java.lang.String top)
EvaluateModel - Build model 'h' on 'D_train', test it on 'D_test', threshold it according to 'top', using default verbosity option.
|
static Result |
Evaluation.evaluateModel(MultilabelClassifier h,
weka.core.Instances D_train,
weka.core.Instances D_test,
java.lang.String top,
java.lang.String vop)
EvaluateModel - Build model 'h' on 'D_train', test it on 'D_test', threshold it according to 'top', verbosity 'vop'.
|
static Result |
Evaluation.evaluateModel(MultilabelClassifier h,
weka.core.Instances D_test,
java.lang.String tal,
java.lang.String vop)
EvaluateModel - Assume 'h' is already built, test it on 'D_test', threshold it according to 'top', verbosity 'vop'.
|
static Result |
Evaluation.testClassifier(MultilabelClassifier h,
weka.core.Instances D_test)
TestClassifier - test classifier h on D_test
|
Modifier and Type | Method and Description |
---|---|
static Result[] |
IncrementalEvaluation.evaluateModel(MultilabelClassifier h,
weka.core.Instances D)
EvaluateModel - over 20 windows.
|
static Result[] |
IncrementalEvaluation.evaluateModel(MultilabelClassifier h,
weka.core.Instances D,
int numWindows,
double rLabeled,
java.lang.String Top,
java.lang.String Vop)
EvaluateModel - Evaluate a multi-label data-stream model over a moving window.
|
static Result |
IncrementalEvaluation.evaluateModel(MultilabelClassifier h,
java.lang.String[] options)
EvaluateModel - Build and evaluate.
|
Modifier and Type | Method and Description |
---|---|
Result |
SCC.testClassifier(weka.classifiers.Classifier h,
weka.core.Instances D_train,
weka.core.Instances D_test,
int[][] partition)
Test classifier h, on dataset D, under super-class partition 'partition'.
|
Modifier and Type | Method and Description |
---|---|
static Result |
MLEvalUtils.averageResults(Result[] folds)
AverageResults - Create a Result with the average of an array of Results by taking the average +/- standand deviation.
|
Modifier and Type | Method and Description |
---|---|
static Result |
MLEvalUtils.averageResults(Result[] folds)
AverageResults - Create a Result with the average of an array of Results by taking the average +/- standand deviation.
|
static double[][] |
StatUtils.condDepMatrix(weka.core.Instances D,
Result result)
CondDepMatrix - Get a Conditional Dependency Matrix.
|
static java.lang.String |
Result.getResultAsString(Result s)
GetResultAsString - print out each prediction in a Result along with its true labelset.
|
static java.lang.String |
Result.getResultAsString(Result s,
int adp)
GetResultAsString - print out each prediction in a Result (to a certain number of decimal points) along with its true labelset.
|
static java.util.HashMap<java.lang.String,java.lang.Double> |
Result.getStats(Result r,
java.lang.String vop)
GetStats.
|
static double[][] |
StatUtils.LEAD(weka.core.Instances D,
Result result) |
static double[][] |
StatUtils.LEAD(weka.core.Instances D,
Result R,
java.lang.String MDType)
LEAD - Performs LEAD on dataset 'D', with corresponding gresult 'R', and dependency measurement type 'MDType'.
|
static double[][] |
StatUtils.LEAD2(weka.core.Instances D,
Result result)
LEAD.
|
static void |
Result.writeResultToFile(Result result,
java.lang.String fname)
WriteResultToFile -- write a Result 'result' out in plain text format to file 'fname'.
|
Modifier and Type | Method and Description |
---|---|
Result |
ResultHistory.get(int index)
Returns the specified history item.
|
Result |
ResultHistoryList.getResultAt(int index)
Returns the result at the specified location.
|
Result |
ResultHistoryList.ResultHistoryModel.getResultAt(int index)
Returns the element at the specified location.
|
Result |
ResultHistory.remove(int index)
Removes the specified entry.
|
Result |
ResultHistoryList.ResultHistoryModel.removeElementAt(int index)
Removes the element at the specified location.
|
Modifier and Type | Method and Description |
---|---|
void |
ResultHistory.add(Result result,
java.lang.String suffix)
Adds the item to the history.
|
void |
ResultHistoryList.ResultHistoryModel.addElement(Result result,
java.lang.String suffix)
Adds the element to the history.
|
void |
ResultHistoryList.addResult(Result result,
java.lang.String suffix)
Adds the element to the history.
|